Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Status
  • Public
Date Range
2013 2019


A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are …

Contributors
Wei, Haoyang, Liu, Yongming, Jiang, Hanqing, et al.
Created Date
2016

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic …

Contributors
Hoffarth, Canio, Rajan, Subramaniam, Goldberg, Robert, et al.
Created Date
2016

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics …

Contributors
Chen, Hailong, Liu, Yongming, Jiao, Yang, et al.
Created Date
2015

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the …

Contributors
Veeresh, Pawan Manjunath, Oswald, Jay, Jiang, Hanqing, et al.
Created Date
2016

As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and strain hardening materials. Multiple experimental procedures are developed to document the nature of single crack localization and multiple cracking mechanisms in various fiber and fabric reinforced cement-based composites. In addition, strain rate effects on the mechanical properties are examined using a high speed servo-hydraulic tension test equipment. Significant hardening and …

Contributors
Yao, Yiming, Mobasher, Barzin, Underwood, Benjamin, et al.
Created Date
2016

Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in aerospace structures that require high specific strength and fatigue resistance. However, studying the fundamental crack growth behavior at the micro- and macroscale as a function of loading history is essential to accurately predict the residual fatigue life of components and achieve damage tolerant designs. The issue of mechanical fatigue can …

Contributors
Datta, Siddhant, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2018

In this research, a new cutting edge wear estimator for micro-endmilling is developed and the reliabillity of the estimator is evaluated. The main concept of this estimator is the minimum chip thickness effect. This estimator predicts the cutting edge radius by detecting the drop in the chip production rate as the cutting edge of a micro- endmill slips over the workpiece when the minimum chip thickness becomes larger than the uncut chip thickness, thus transitioning from the shearing to the ploughing dominant regime. The chip production rate is investigated through simulation and experiment. The simulation and the experiment show that …

Contributors
LEE, JUE-HYUN, Sodemann, Angela A, Shuaib, Abdelrahman, et al.
Created Date
2019

7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional …

Contributors
Stannard, Tyler, Chawla, Nikhilesh, Solanki, Kiran N, et al.
Created Date
2017

The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design …

Contributors
Tahir, Fraaz, Liu, Yongming, Jiang, Hanqing, et al.
Created Date
2017

Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures or processing settings. While optimization techniques have mature applications to a large range of engineering systems, their application to material design meets unique challenges due to the high dimensionality of microstructures and the high costs in computing process-structure-property (PSP) mappings. The key to addressing these challenges is the learning of …

Contributors
Cang, Ruijin, Ren, Yi, Liu, Yongming, et al.
Created Date
2018

This investigation is focused on the consideration of structural uncertainties in nearly-straight pipes conveying fluid and on the effects of these uncertainties on the dynamic response and stability of those pipes. Of interest more specifically are the structural uncertainties which affect directly the fluid flow and its feedback on the structural response, e.g., uncertainties on/variations of the inner cross-section and curvature of the pipe. Owing to the complexity of introducing such uncertainties directly in finite element models, it is desired to proceed directly at the level of modal models by randomizing simultaneously the appropriate mass, stiffness, and damping matrices. The …

Contributors
Shah, Shrinil, Mignolet, Marc P, Liu, Yongming, et al.
Created Date
2017

The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials with complex internal geometries. A key contribution of this work is the creation of novel methods designed to automate the incorporation of high-resolution data, e.g. from X-ray tomography, that can be used to better interpret the enormous volume of data generated in modern in-situ experimental testing. Thus new algorithms were developed for automating analysis of complex microstructures characterized by segmented tomographic images. A centrality-based geometry segmentation algorithm was developed to …

Contributors
Yuan, Rui, Oswald, Jay, Chawla, Nikhilesh, et al.
Created Date
2015

In this paper, at first, analytical formulation of J-integral for a non-local particle model (VCPM) using atomic scale finite element method is proposed for fracture analysis of 2D solids. A brief review of classical continuum-based J-integral and anon-local lattice particle method is given first. Following this, detailed derivation for the J-integral in discrete particle system is given using the energy equivalence and stress-tensor mapping between the continuum mechanics and lattice-particle system.With the help of atomistic finite element method, the J-integral is expressed as a summation of the corresponding terms in the particle system. Secondly, a coupling algorithm between a non-local …

Contributors
Zope, Jayesh Vishnu, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016

Aging-related damage and failure in structures, such as fatigue cracking, corrosion, and delamination, are critical for structural integrity. Most engineering structures have embedded defects such as voids, cracks, inclusions from manufacturing. The properties and locations of embedded defects are generally unknown and hard to detect in complex engineering structures. Therefore, early detection of damage is beneficial for prognosis and risk management of aging infrastructure system. Non-destructive testing (NDT) and structural health monitoring (SHM) are widely used for this purpose. Different types of NDT techniques have been proposed for the damage detection, such as optical image, ultrasound wave, thermography, eddy current, …

Contributors
Chang, Qinan, Liu, Yongming, Mignolet, Marc, et al.
Created Date
2019

All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this …

Contributors
Kim, Inho, Chattopadhyay, Aditi, Jiang, Hanqing, et al.
Created Date
2016

The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in …

Contributors
Dey, Vikram, Mobasher, Barzin, Rajan, Subramaniam D., et al.
Created Date
2016

Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that catastrophic disasters that arise from fatigue failure could be avoided. The stress-life approach is the most classical way that academia applies to analyze fatigue data, which correlates the fatigue lifetime with stress amplitudes during cyclic loadings. Fracture mechanics approach is another well-established way, by which people regard the cyclic stress …

Contributors
Liu, Siying, Liu, Yongming, Jiao, Yang, et al.
Created Date
2018

An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive. In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial …

Contributors
Li, Hechao, Jiao, Yang, Chawla, Nikhilesh, et al.
Created Date
2017

In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review is made about these three material systems. In Chapter 2, detailed discussion of the statistical morphological descriptors and a stochastic optimization approach for microstructure reconstruction is presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex heterogeneous materials is introduced. In Chapter 4, a new …

Contributors
Xu, Yaopengxiao, Jiao, Yang, Liu, Yongming, et al.
Created Date
2018

Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments. In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical simulations to allow conversion of measured distributions of pressure peaks in a cavitating flow to distributions of microscopic impact loadings modeling individual bubble collapse events, and 2) a finite strain, thermo-mechanical material model for polyurea-based elastomers was developed using a logarithmic rate formulation and implemented into an explicit finite element code. …

Contributors
Liao, Xiao, Oswald, Jay, Liu, Yongming, et al.
Created Date
2016

A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation. The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for the assembly of a variety of nanoscale objects. However, certain important fundamental issues at the interface have not been fully explored, especially when the size of the object is comparable with the liquid molecules. In the first MD simulation system, the diffusion and self-assembly of nanoparticles with different size, …

Contributors
Gao, Wei, Dai, Lenore, Jiao, Yang, et al.
Created Date
2017

This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when they are used in specific hot spots within a structure. A multiscale approach was implemented to determine the mechanical and thermal properties of the nanocomposites, which were used in detailed finite element models (FEMs) to analyze interlaminar failures in T and Hat section stringers. The delamination that first occurs between …

Contributors
Hasan, Zeaid, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2014

Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods …

Contributors
Borkowski, Luke, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2015

Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium is examined using generalized stacking fault energies (GSFE) computed by the first principles calculations. It is shown that oxygen can significantly increase the energy barrier to dislocation motion on most of the studied slip planes. Then the Peierls-Nabbaro model is utilized in conjunction with the GSFE to estimate the Peierls …

Contributors
Gholami Bazehhour, Benyamin, Solanki, Kiran N, Liu, Yongming, et al.
Created Date
2018

The present investigation is part of a long-term effort focused on the development of a methodology for the computationally efficient prediction of the dynamic response of structures with multiple joints. The first part of this thesis reports on the dynamic response of nominally identical beams with a single lap joint (“Brake-Reuss” beam). The observed impact responses at different levels clearly demonstrate the occurrence of both micro- and macro-slip, which are reflected by increased damping and a lowering of natural frequencies. Significant beam-to-beam variability of impact responses is also observed. Based on these experimental results, a deterministic 4-parameter Iwan model of …

Contributors
Robertson, Brett Anthony, Mignolet, Marc P, Brake, Matt, et al.
Created Date
2016

The focus of this investigation is on the formulation and a validation of reduced order models (ROMs) for the prediction of the response of structures with embedded piezoelectric actuators. The ROMs considered here are those constructed in a nonintrusive manner from a commercial finite element software, NASTRAN is adopted here. Notwithstanding the popularity of piezoelectric materials in structural dynamics related applications such as structural health monitoring and energy harvesting, not all commercial finite element software allow directly their modeling. In such cases, e.g., with NASTRAN, one can proceed with an analogy and replace the electric actuation in the piezoelectric material …

Contributors
Vyas, Varun, Mignolet, Marc, Hollkamp, Joseph, et al.
Created Date
2014

An integrated experimental and numerical investigation for laser-generated optoacoustic wave propagation in structural materials is performed. First, a multi-physics simulation model is proposed to simulate the pulsed laser as a point heat source which hits the surface of an aluminum sheet. The pulsed laser source can generate a localized heating on the surface of the plate and induce an in-plane stress wave. ANSYS – a finite element analysis software – is used to build the 3D model and a coupled thermal-mechanical simulation is performed in which the heat flux is determined by an empirical laser-heat conversion relationship. The displacement and …

Contributors
Liu, Chen, Liu, Yongming, Wang, Liping, et al.
Created Date
2016

Cohesive zone model is one of the most widely used model for fracture analysis, but still remains open ended field for research. The earlier works using the cohesive zone model and Extended finite element analysis (XFEM) have been briefly introduced followed by an elaborate elucidation of the same concepts. Cohesive zone model in conjugation with XFEM is used for analysis in static condition in order to check its applicability in failure analysis. A real time setup of pipeline failure due to impingement is analyzed along with a detailed parametric study to understand the influence of the prominent design variable. After …

Contributors
Chandrasekhar, Vishal, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of …

Contributors
Aguayo, Matthew Joseph, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

Materials with unprecedented properties are necessary to make dramatic changes in current and future aerospace platforms. Hybrid materials and composites are increasingly being used in aircraft and spacecraft frames; however, future platforms will require an optimal design of novel materials that enable operation in a variety of environments and produce known/predicted damage mechanisms. Nanocomposites and nanoengineered composites with CNTs have the potential to make significant improvements in strength, stiffness, fracture toughness, flame retardancy and resistance to corrosion. Therefore, these materials have generated tremendous scientific and technical interest over the past decade and various architectures are being explored for applications to …

Contributors
Subramanian, Nithya, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2018

In-situ fatigue damage diagnosis and prognosis is a challenging problem for both metallic and composite materials and structures. There are various uncertainties arising from material properties, component geometries, measurement noise, feature extraction techniques, and modeling errors. It is essential to manage and incorporate these uncertainties in order to achieve accurate damage detection and remaining useful life (RUL) prediction. The aim of this study is to develop an integrated fatigue damage diagnosis and prognosis framework for both metallic and composite materials. First, Lamb waves are used as the in-situ damage detection technique to interrogate the damaged structures. Both experimental and numerical …

Contributors
Peng, Tishun, Liu, Yongming, Chattopadhyay, Aditi, et al.
Created Date
2016

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing …

Contributors
Hensberry, Kevin Michael, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2013

This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a set of modes for the component of interest (the β component). The response in the rest of the structure (the α component) induced by these modes is then determined and optimally represented by applying a Proper Orthogonal Decomposition strategy using Singular Value Decomposition. These first two methods are effectively basis …

Contributors
Wang, Yuting, Mignolet, Marc P, Jiang, Hanqing, et al.
Created Date
2017

Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE mechanisms. Therefore, to gain insights into HE mechanisms in iron, this dissertation aims to investigate several key issues involving HE such as: a) the incipient crack tip events; b) the cohesive strength of grain boundaries (GBs); c) the dislocation-GB interactions and d) the dislocation mobility. The crack tip, which presents …

Contributors
Adlakha, Ilaksh, Solanki, Kiran, Mignolet, Marc, et al.
Created Date
2015

Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their safety and integrity. Testing for the aging pipe strength and toughness estimation without interrupting the transmission and operations thus becomes important. The state-of-the-art techniques tend to focus on the single modality deterministic estimation of pipe strength and do not account for inhomogeneity and uncertainties, many others appear to rely on …

Contributors
Dahire, Sonam, Liu, Yongming, Jiao, Yang, et al.
Created Date
2018

There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address the scale-dependent behavior and failure. The rate dependency and nonlinearity of polymer matrix composite materials further complicates the modeling. Additionally, variability in the material constituents plays an important role in the material behavior and damage. The systematic consideration of uncertainties is as important as having the appropriate structural model, especially during …

Contributors
Johnston, Joel Philip, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2016

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary …

Contributors
Xu, Yaopengxiao, Jiao, Yang, Oswald, Jay, et al.
Created Date
2014

A previously developed small time scale fatigue crack growth model is improved, modified and extended with an emphasis on creating the simplest models that maintain the desired level of accuracy for a variety of materials. The model provides a means of estimating load sequence effects by continuously updating the crack opening stress every cycle, in a simplified manner. One of the significant phenomena of the crack opening stress under negative stress ratio is the residual tensile stress induced by the applied compressive stress. A modified coefficient is introduced to determine the extent to which residual stress impact the crack closure …

Contributors
Venkatesan, Karthik Rajan, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016

There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a variety of areas such as sensor development, damage detection and localization, physics based models, and prognosis models for residual useful life (RUL) estimation. Damage localization and prediction is further complicated by geometric, material, loading, and environmental variabilities. Therefore, it is essential to develop robust SHM methodologies by taking into account …

Contributors
Neerukatti, Rajesh Kumar, Chattopadhyay, Aditi, Jiang, Hanqing, et al.
Created Date
2016

The focus of this investigation is on the development of a surrogate model of hypersonic aerodynamic forces on structures to reduce the computational effort involved in the determination of the structural response. The application is more precisely focused on uncertain structures. Then, following an uncertainty management strategy, the surrogate may exhibit an error with respect to Computational Fluid Dynamics (CFD) reference data as long as that error does not significantly affect the uncertainty band of the structural response. Moreover, this error will be treated as an epistemic uncertainty introduced in the model thereby generating an uncertain surrogate. Given this second …

Contributors
Sharma, Pulkit, Mignolet, Marc Paul, Liu, Yongming, et al.
Created Date
2017

This investigation focuses on the development of uncertainty modeling methods applicable to both the structural and thermal models of heated structures as part of an effort to enable the design under uncertainty of hypersonic vehicles. The maximum entropy-based nonparametric stochastic modeling approach is used within the context of coupled structural-thermal Reduced Order Models (ROMs). Not only does this strategy allow for a computationally efficient generation of samples of the structural and thermal responses but the maximum entropy approach allows to introduce both aleatoric and some epistemic uncertainty into the system. While the nonparametric approach has a long history of applications …

Contributors
Song, Pengchao, Mignolet, Marc P, Smarslok, Benjamin, et al.
Created Date
2019

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix …

Contributors
Hruby, Peter, Chawla, Nikhilesh, Solanki, Kiran, et al.
Created Date
2014