Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The proper quantification and visualization of uncertainty requires a high level of domain knowledge. Despite this, few studies have collected and compared the roles, experiences and opinions of scientists in different types of uncertainty analysis. I address this gap by conducting two types of studies: 1) a domain characterization study with general questions for experts from various fields based on a recent literature review in ensemble analysis and visualization, and; 2) a long-term interview with domain experts focusing on specific problems and challenges in uncertainty analysis. From the domain characterization, I identified the most common metrics applied for uncertainty quantification …

Liang, Xing, Maciejewski, Ross, Mascaro, Giuseppe, et al.
Created Date