Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2012 2019


Detection of extruded features like rooftops and trees in aerial images automatically is a very active area of research. Elevated features identified from aerial imagery have potential applications in urban planning, identifying cover in military training or flight training. Detection of such features using commonly available geospatial data like orthographic aerial imagery is very challenging because rooftop and tree textures are often camouflaged by similar looking features like roads, ground and grass. So, additonal data such as LIDAR, multispectral imagery and multiple viewpoints are exploited for more accurate detection. However, such data is often not available, or may be improperly …

Contributors
Khanna, Kunal, Femiani, John, Wonka, Peter, et al.
Created Date
2013

In the field of Geographic Information Science (GIScience), we have witnessed the unprecedented data deluge brought about by the rapid advancement of high-resolution data observing technologies. For example, with the advancement of Earth Observation (EO) technologies, a massive amount of EO data including remote sensing data and other sensor observation data about earthquake, climate, ocean, hydrology, volcano, glacier, etc., are being collected on a daily basis by a wide range of organizations. In addition to the observation data, human-generated data including microblogs, photos, consumption records, evaluations, unstructured webpages and other Volunteered Geographical Information (VGI) are incessantly generated and shared on …

Contributors
Shao, Hu, Li, Wenwen, Rey, Sergio, et al.
Created Date
2018

This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the NVIDIA CUDA framework; however, the proposed solution in this document uses the Microsoft general-purpose computing on graphics processing units API. The implementation allows for the simulation of a large number of particles in a real-time scenario. The solution presented here uses the Smoothed Particles Hydrodynamics algorithm to calculate the forces …

Contributors
Figueroa, Gustavo, Farin, Gerald, Maciejewski, Ross, et al.
Created Date
2012

In the last few years, there has been a tremendous increase in the use of big data. Most of this data is hard to understand because of its size and dimensions. The importance of this problem can be emphasized by the fact that Big Data Research and Development Initiative was announced by the United States administration in 2012 to address problems faced by the government. Various states and cities in the US gather spatial data about incidents like police calls for service. When we query large amounts of data, it may lead to a lot of questions. For example, when …

Contributors
Tahir, Anique, Elsayed, Mohamed, Hsiao, Ihan, et al.
Created Date
2018

Coastal areas are susceptible to man-made disasters, such as oil spills, which not only have a dreadful impact on the lives of coastal communities and businesses but also have lasting and hazardous consequences. The United States coastal areas, especially the Gulf of Mexico, have witnessed devastating oil spills of varied sizes and durations that resulted in major economic and ecological losses. These disasters affected the oil, housing, forestry, tourism, and fishing industries with overall costs exceeding billions of dollars (Baade et al. (2007); Smith et al. (2011)). Extensive research has been done with respect to oil spill simulation techniques, spatial …

Contributors
Pydi Medini, Prannoy Chandra, Maciejewski, Ross, Grubesic, Anthony, et al.
Created Date
2018

Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery calcium score. However, each CIMT examination includes several ultrasound videos, and interpreting each of these CIMT videos involves three operations: (1) select three enddiastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in each selected frame, and (3) trace the lumen-intima interface and the media-adventitia …

Contributors
Shin, Jae Yul, Liang, Jianming, Maciejewski, Ross, et al.
Created Date
2016

The rise in globalization has led to regional climate events having an increased effect on global food security. These indirect first- and second-order effects are generally geographically disparate from the region experiencing the climate event. Without understanding the topology of the food trade network, international aid may be naively directed to the countries directly experiencing the climate event and not to countries that will face potential food insecurity due to that event. This thesis focuses on the development of a visual analytics system for exploring second-order effects of climate change under the lens of global trade. In order to visualize …

Contributors
Seville, Travis Allen, Maciejewski, Ross, Hsiao, I-Han, et al.
Created Date
2017

An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge, but also their creativity—the ability to generate something not only useful, but also novel. In practice, there are initiatives such as Free and Open Source Software communities developing innovative software. In research, the field of crowdsourced creativity, which attempts to design scalable support mechanisms, is blooming. However, both contexts still present many opportunities for advancement. In this dissertation, I seek …

Contributors
da Silva Girotto, Victor Augusto, Walker, Erin A, Burleson, Winslow, et al.
Created Date
2019

In visualizing information hierarchies, icicle plots are efficient diagrams in that they provide the user a straightforward layout for different levels of data in a hierarchy and enable the user to compare items based on the item width. However, as the size of the hierarchy grows large, the items in an icicle plot end up being small and indistinguishable. In this thesis, by maintaining the positive characteristics of traditional icicle plots and incorporating new features such as dynamic diagram and active layer, we developed an interactive visualization that allows the user to selectively drill down or roll up to review …

Contributors
Wu, Bi, Maciejewski, Ross, Runger, George, et al.
Created Date
2014

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal …

Contributors
Ta, Duyan Nguyen, Wang, Yalin, Maciejewski, Ross, et al.
Created Date
2013

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, …

Contributors
Hayden, Thomas, Maciejewski, Ross, Wang, Yalin, et al.
Created Date
2014

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's …

Contributors
Xu, Liang, Wang, Yalin, Maciejewski, Ross, et al.
Created Date
2013

Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes comprising mostly four-sided faces (i.e., quads), are a popular choice for many applications such as polygonal shape modeling, computer animation, base meshes for spline and subdivision surface, simulation, and architectural design. This thesis investigates the topic of connectivity control, i.e., exploring different choices of mesh connectivity to represent the same 3D shape or surface. One key concept of QD mesh connectivity is the distinction between regular and irregular elements: a vertex with valence 4 is regular; otherwise, it is irregular. In a similar sense, a face with four sides is regular; otherwise, …

Contributors
Peng, Chi-Han, Wonka, Peter, Maciejewski, Ross, et al.
Created Date
2014

In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive. More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied separately, there is little work on how data-driven approaches across all three forms relate and lend themselves to practical applications. Given an agent behavior and the percept sequence, how one can identify a specific outcome such as the likeliest explanation? To address real-world problems, it is vital to understand …

Contributors
Shaabani, Elham, Shakarian, Paulo, Davulcu, Hasan, et al.
Created Date
2019

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations …

Contributors
Alashri, Saud, Davulcu, Hasan, Desouza, Kevin C., et al.
Created Date
2018

Exabytes of data are created online every day. This deluge of data is no more apparent than it is on social media. Naturally, finding ways to leverage this unprecedented source of human information is an active area of research. Social media platforms have become laboratories for conducting experiments about people at scales thought unimaginable only a few years ago. Researchers and practitioners use social media to extract actionable patterns such as where aid should be distributed in a crisis. However, the validity of these patterns relies on having a representative dataset. As this dissertation shows, the data collected from social …

Contributors
Morstatter, Fred, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2017

Time-series plots are used in many scientific and engineering applications. In this thesis, two new plug-ins for piecewise constant and event time-series are developed within the Eclipse BIRT (Business Intelligence and Reporting Tools) framework. These customizable plug-ins support superdense time, which is required for plotting the dynamics of Parallel DEVS models. These plug-ins are designed to receive time-based alphanumerical data sets from external computing sources, which can then be dynamically plotted. Static and dynamic time-series plotting are demonstrated in two settings. First, as standalone plug-ins, they can be used to create static plots, which can then be included in BIRT …

Contributors
Sundaramoorthi, Savitha, Sarjoughian, Hessam S, Maciejewski, Ross, et al.
Created Date
2015

Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This thesis studies the performance of Ceph (a disk centric model) and Alluxio (a memory centric model) and evaluates whether a hybrid model provides any performance benefits with respect to big data applications. To this end, an application TechTalk is created that uses Ceph to store data and Alluxio to perform …

Contributors
NAGENDRA, SHILPA, Huang, Dijiang, Zhao, Ming, et al.
Created Date
2017

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The …

Contributors
Hoxha, Bardh, Fainekos, Georgios, Sarjoughian, Hessam, et al.
Created Date
2017

This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts. First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image, the facade is hierarchically segmented and labeled with a collection of manual and automatic tools. The user can then model constraints that should be maintained in any variation of the input facade design. Subsequently, facade variations are generated for different facade sizes, where multiple variations can be produced for …

Contributors
Bao, Fan, Wonka, Peter, Maciejewski, Ross, et al.
Created Date
2014

The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who carrying the APOE e4 allele than those who are APOE e4 noncarriers. Also, brain structure and function depend on APOE genotype not just for Alzheimer's disease patients but also in health elderly individuals, so APOE genotyping is considered critical in clinical trials of Alzheimer's disease. We used a large sample …

Contributors
Li, Bolun, Wang, Yalin, Maciejewski, Ross, et al.
Created Date
2015

Predictive analytics embraces an extensive area of techniques from statistical modeling to machine learning to data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline under the underlying assumption that a human-in-the-loop can aid the analysis by integrating domain knowledge that might not be broadly captured by the system. Primary uses of visualization in the predictive analytics pipeline have focused on data cleaning, exploratory analysis, and diagnostics. More recently, numerous visual analytics systems for feature selection, incremental …

Contributors
Lu, Yafeng, Maciejewski, Ross, Cooke, Nancy, et al.
Created Date
2017

With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable information. A key task in the data translation is the analysis of network connectivity via marked nodes---the primary focus of our research. We have developed a framework for analyzing network connectivity via marked nodes in large scale graphs, utilizing novel algorithms in three interrelated areas: (1) analysis of a single …

Contributors
Freitas, Scott, Tong, Hanghang, Maciejewski, Ross, et al.
Created Date
2018

Critical infrastructures in healthcare, power systems, and web services, incorporate cyber-physical systems (CPSes), where the software controlled computing systems interact with the physical environment through actuation and monitoring. Ensuring software safety in CPSes, to avoid hazards to property and human life as a result of un-controlled interactions, is essential and challenging. The principal hurdle in this regard is the characterization of the context driven interactions between software and the physical environment (cyber-physical interactions), which introduce multi-dimensional dynamics in space and time, complex non-linearities, and non-trivial aggregation of interaction in case of networked operations. Traditionally, CPS software is tested for safety …

Contributors
Banerjee, Ayan, Gupta, Sandeep K.S., Poovendran, Radha, et al.
Created Date
2012

Over 2 billion people are using online social network services, such as Facebook, Twitter, Google+, LinkedIn, and Pinterest. Users update their status, post their photos, share their information, and chat with others in these social network sites every day; however, not everyone shares the same amount of information. This thesis explores methods of linking publicly available data sources as a means of extrapolating missing information of Facebook. An application named "Visual Friends Income Map" has been created on Facebook to collect social network data and explore geodemographic properties to link publicly available data, such as the US census data. Multiple …

Contributors
Mao, Jingxian, Maciejewski, Ross, Farin, Gerald, et al.
Created Date
2012

Identifying important variation patterns is a key step to identifying root causes of process variability. This gives rise to a number of challenges. First, the variation patterns might be non-linear in the measured variables, while the existing research literature has focused on linear relationships. Second, it is important to remove noise from the dataset in order to visualize the true nature of the underlying patterns. Third, in addition to visualizing the pattern (preimage), it is also essential to understand the relevant features that define the process variation pattern. This dissertation considers these variation challenges. A base kernel principal component analysis …

Contributors
Sahu, Anshuman, Runger, George C., Wu, Teresa, et al.
Created Date
2013

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for …

Contributors
Kolak, Marynia Aniela, Anselin, Luc, Rey, Sergio, et al.
Created Date
2017

Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected by first responders on the ground in the affected region or by official agencies such as local governments involved in the response. However, the ubiquity of mobile devices has empowered people to publish information during a crisis through social media, such as the damage reports from a hurricane. Social media …

Contributors
Kumar, Shamanth, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2015

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website Panoramio.com through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and …

Contributors
Li, Xun, Anselin, Luc, Koschinsky, Julia, et al.
Created Date
2012

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors …

Contributors
Kondaveeti, Anirudh, Runger, George, Mirchandani, Pitu, et al.
Created Date
2012

When looking at drawings of graphs, questions about graph density, community structures, local clustering and other graph properties may be of critical importance for analysis. While graph layout algorithms have focused on minimizing edge crossing, symmetry, and other such layout properties, there is not much known about how these algorithms relate to a user’s ability to perceive graph properties for a given graph layout. This study applies previously established methodologies for perceptual analysis to identify which graph drawing layout will help the user best perceive a particular graph property. A large scale (n = 588) crowdsourced experiment is conducted to …

Contributors
Soni, Utkarsh, Maciejewski, Ross, Kobourov, Stephen, et al.
Created Date
2018

Intelligence analysts’ work has become progressively complex due to increasing security threats and data availability. In order to study “big” data exploration within the intelligence domain the intelligence analyst task was abstracted and replicated in a laboratory (controlled environment). Participants used a computer interface and movie database to determine the opening weekend gross movie earnings of three pre-selected movies. Data consisted of Twitter tweets and predictive models. These data were displayed in various formats such as graphs, charts, and text. Participants used these data to make their predictions. It was expected that teams (a team is a group with members …

Contributors
Buchanan, Verica, Cooke, Nancy J., Maciejewski, Ross, et al.
Created Date
2016

Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called paper-to-CAD conversion or drawing conversion. In geographic information systems (GIS), satellite or aerial images are vectorized to create maps. In graphic design and photography, raster graphics can be vectorized for easier usage and resizing. Vector arts are popular as online contents. Vectorization takes raster images, point clouds, or a series of scattered data samples in space, outputs graphic elements of various types including points, lines, curves, polygons, parametric curves and …

Contributors
Yin, Xuetao, Razdan, Anshuman, Wonka, Peter, et al.
Created Date
2016

Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would not be apparent in tabular form. However, several critical challenges arise when visualizing and exploring these large spatiotemporal datasets. While, the underlying geographical component of the data lends itself well to univariate visualization in the form of traditional cartographic representations (e.g., choropleth, isopleth, dasymetric maps), as the data becomes multivariate, …

Contributors
Zhang, Yifan, Maciejewski, Ross, Mack, Elizabeth, et al.
Created Date
2016

The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work has been done analyzing the dynamics of spatial networks; however, many challenges still remain in this field. First, the development of social media and transportation technologies has greatly reshaped the typologies of communications between different geographical regions. Second, the distance metrics used in spatial analysis should also be enriched with …

Contributors
Wang, Feng, Maciejewski, Ross, Davulcu, Hasan, et al.
Created Date
2017

The Global Change Assessment Model (GCAM) is an integrated assessment tool for exploring consequences and responses to global change. However, the current iteration of GCAM relies on NetCDF file outputs which need to be exported for visualization and analysis purposes. Such a requirement limits the uptake of this modeling platform for analysts that may wish to explore future scenarios. This work has focused on a web-based geovisual analytics interface for GCAM. Challenges of this work include enabling both domain expert and model experts to be able to functionally explore the model. Furthermore, scenario analysis has been widely applied in climate …

Contributors
Chang, Zheng, Maciejewski, Ross, Sarjoughian, Hessam, et al.
Created Date
2015

The media disperses a large amount of information daily pertaining to political events social movements, and societal conflicts. Media pertaining to these topics, no matter the format of publication used, are framed a particular way. Framing is used not for just guiding audiences to desired beliefs, but also to fuel societal change or legitimize/delegitimize social movements. For this reason, tools that can help to clarify when changes in social discourse occur and identify their causes are of great use. This thesis presents a visual analytics framework that allows for the exploration and visualization of changes that occur in social climate …

Contributors
Steptoe, Michael, Maciejewski, Ross, Davulcu, Hasan, et al.
Created Date
2017

In recent years, the food, energy, and water (FEW) nexus has become a topic of considerable importance and has spurred research in many scientific and technical fields. This increased interest stems from the high level, and broad area, of impact that could occur in the long term if the interactions between these complex FEW sectors are incorrectly or only partially defined. For this reason, a significant amount of interdisciplinary collaboration is needed to accurately define these interactions and produce viable solutions to help sustain and secure resources within these sectors. Providing tools that effectively promote interdisciplinary collaboration would allow for …

Contributors
Mathis, Brandon, Maciejewski, Ross, Mascaro, Giuseppe, et al.
Created Date
2019

The proper quantification and visualization of uncertainty requires a high level of domain knowledge. Despite this, few studies have collected and compared the roles, experiences and opinions of scientists in different types of uncertainty analysis. I address this gap by conducting two types of studies: 1) a domain characterization study with general questions for experts from various fields based on a recent literature review in ensemble analysis and visualization, and; 2) a long-term interview with domain experts focusing on specific problems and challenges in uncertainty analysis. From the domain characterization, I identified the most common metrics applied for uncertainty quantification …

Contributors
Liang, Xing, Maciejewski, Ross, Mascaro, Giuseppe, et al.
Created Date
2016