Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for ...

Contributors
Walker, Phillip, Tang, Wenbo, Kostelich, Eric, et al.
Created Date
2018

Earth-system models describe the interacting components of the climate system and technological systems that affect society, such as communication infrastructures. Data assimilation addresses the challenge of state specification by incorporating system observations into the model estimates. In this research, a particular data assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is applied to the ionosphere, which is a domain of practical interest due to its effects on infrastructures that depend on satellite communication and remote sensing. This dissertation consists of three main studies that propose strategies to improve space- weather specification during ionospheric extreme events, but are generally ...

Contributors
Durazo, Juan Alberto, Kostelich, Eric J., Mahalov, Alex, et al.
Created Date
2018