Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2018


The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits …

Contributors
Bjorklund, George Reed, Newbern, Jason M, Neisewander, Janet, et al.
Created Date
2018

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the …

Contributors
Der-Ghazarian, Taleen, Neisewander, Janet, Olive, Foster, et al.
Created Date
2018

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, …

Contributors
Finkelstein, Abigail Basya, Amdam, Gro V, Conrad, Cheryl, et al.
Created Date
2017

Approximately 2.8 million Americans seek medical care for traumatic brain injury (TBI) each year. Of this population, the majority are sufferers of diffuse TBI, or concussion. It is unknown how many more individuals decline to seek medical care following mild TBI. This likely sizeable population of un- or self-treated individuals combined with a lack of definitive biomarkers or objective post-injury diagnostics creates a unique need for practical therapies among diffuse TBI sufferers. Practical therapies stand to decrease the burden of TBI among those who would otherwise not seek treatment or do not meet clinical diagnostic criteria upon examination. For this …

Contributors
Harrison, Jordan Lee, Lifshitz, Jonathan, Neisewander, Janet, et al.
Created Date
2017

The Erk/MAPK pathway plays a major role in cell growth, differentiation, and survival. Genetic mutations that cause dysregulation in this pathway can result in the development of Rasopathies, a group of several different syndromes including Noonan Syndrome, Costello Syndrome, and Neurofibromatosis Type-1. Since these mutations are germline and affect all cell types it is hard to differentiate the role that Erk/MAPK plays in each cell type. Previous research has shown that individual cell types utilize the Erk/MAPK pathway in different ways. For example, the morphological development of lower motor neuron axonal projections is Erk/MAPK-independent during embryogenesis, while nociceptive neuron projections …

Contributors
Smith, Colton, Newbern, Jason, Neisewander, Janet, et al.
Created Date
2017

Schizophrenia is considered a multifactorial disorder with complex genetic variants in response to environmental stimuli. However, the specific genetic contribution to schizophrenia risk is largely unknown. The transcription factor early growth response gene 3 (EGR3) can be activated rapidly after stimuli and thus may translate environmental stimuli into gene changes that influence schizophrenia risk. However, the downstream genes that may be regulated by EGR3 are not clear. While the 5-Hydroxytryptamine receptor 2A (5HT2AR) - encoding gene Htr2a has been implicated in the etiology of schizophrenia, the mechanisms by which Htr2a influences susceptibility to this illness are poorly understood. We previously …

Contributors
Zhao, Xiuli, Gallitano, Amelia, Van Keuren-Jensen, Kendall, et al.
Created Date
2017

Animals must learn to ignore stimuli that are irrelevant to survival, which is a process referred to as ‘latent inhibition’. This process has been shown to be genetically heritable (Latshaw JS, Mazade R, Sinakevitch I, Mustard JA, Gadau J, Smith BH (submitted)). The locus containing the AmTYR1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. The Smith lab has been able to show a correlation between learning and the AmTYR1 receptor gene through pharmacological inhibition of the receptor. In order to further confirm this finding, experiments were designed to …

Contributors
Petersen, Mary Margaret, Smith, Brian H, Wang, Ying, et al.
Created Date
2017

Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th decades of life as low back pain, this disease was originally believed to be the result of natural “wear and tear” coupled with repetitive mechanical insult, and as such most studies focus on patients between 40 and 50 years of age. Research over the past two decades, however, has demonstrated …

Contributors
Fulton, Travis, Liebig, Juergen, Neisewander, Janet, et al.
Created Date
2016

MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly expressed in the nucleus accumbens (NAc), a pivotal brain region involved in reward and motivation. The central hypothesis of this dissertation is that NAc miR-495 regulates drug abuse-related behavior by targeting several addiction-related genes (ARGs). I tested this hypothesis in two ways: 1) by examining the effects of viral-mediated miR-495 …

Contributors
Bastle, Ryan, Neisewander, Janet, Newbern, Jason, et al.
Created Date
2016

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. When TBI occurs in children it often results in severe cognitive and behavioral deficits. Post-injury, the pediatric brain may be sensitive to the effects of TBI while undergoing a number of age-dependent physiological and neurobiological changes. Due to the nature of the developing cortex, it is important to understand how a pediatric brain recovers from a severe TBI (sTBI) compared to an adult. Investigating major cortical and cellular changes after sTBI in a pediatric model can elucidate why pediatrics go on to suffer more neurological …

Contributors
Nichols, Joshua, Anderson, Trent, Newbern, Jason, et al.
Created Date
2015