Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics …

Contributors
Chen, Hailong, Liu, Yongming, Jiao, Yang, et al.
Created Date
2015

The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials with complex internal geometries. A key contribution of this work is the creation of novel methods designed to automate the incorporation of high-resolution data, e.g. from X-ray tomography, that can be used to better interpret the enormous volume of data generated in modern in-situ experimental testing. Thus new algorithms were developed for automating analysis of complex microstructures characterized by segmented tomographic images. A centrality-based geometry segmentation algorithm was developed to …

Contributors
Yuan, Rui, Oswald, Jay, Chawla, Nikhilesh, et al.
Created Date
2015

This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy. This high speed crack owing to its kinetic energy can penetrate beyond the corroded layer into the parent phase and thus effectively reducing strength of the parent phase. Silver-gold alloys provide an ideal system to study this effect, as hydrogen effect can be ruled out on thermodynamic basis. During corrosion …

Contributors
Badwe, Nilesh Umesh, Sieradzki, Karl, Peralta, Pedro, et al.
Created Date
2014