Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the …

Contributors
Veeresh, Pawan Manjunath, Oswald, Jay, Jiang, Hanqing, et al.
Created Date
2016

In this paper, at first, analytical formulation of J-integral for a non-local particle model (VCPM) using atomic scale finite element method is proposed for fracture analysis of 2D solids. A brief review of classical continuum-based J-integral and anon-local lattice particle method is given first. Following this, detailed derivation for the J-integral in discrete particle system is given using the energy equivalence and stress-tensor mapping between the continuum mechanics and lattice-particle system.With the help of atomistic finite element method, the J-integral is expressed as a summation of the corresponding terms in the particle system. Secondly, a coupling algorithm between a non-local …

Contributors
Zope, Jayesh Vishnu, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016