ASU Electronic Theses and Dissertations

Permanent Link Feedback

Contributor
Date Range
2011 2017

Bayesian networks are powerful tools in system reliability assessment due to their flexibility in modeling the reliability structure of complex systems. This dissertation develops Bayesian network models for system reliability analysis through the use of Bayesian inference techniques. Bayesian networks generalize fault trees by allowing components and subsystems to be related by conditional probabilities instead of deterministic relationships; thus, they provide analytical advantages to the situation when the failure structure is not well understood, especially during the product design stage. In order to tackle this problem, one needs to utilize auxiliary information such as the reliability information from similar products ...

Contributors
Yontay, Petek, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2016

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry ...

Contributors
Juarez, Joseph Moses, Montgomery, Douglas C., Borror, Connie M., et al.
Created Date
2012

In accelerated life tests (ALTs), complete randomization is hardly achievable because of economic and engineering constraints. Typical experimental protocols such as subsampling or random blocks in ALTs result in a grouped structure, which leads to correlated lifetime observations. In this dissertation, generalized linear mixed model (GLMM) approach is proposed to analyze ALT data and find the optimal ALT design with the consideration of heterogeneous group effects. Two types of ALTs are demonstrated for data analysis. First, constant-stress ALT (CSALT) data with Weibull failure time distribution is modeled by GLMM. The marginal likelihood of observations is approximated by the quadrature rule; ...

Contributors
Seo, Kangwon, Pan, Rong, Montgomery, Douglas C, et al.
Created Date
2017

Optimal experimental design for generalized linear models is often done using a pseudo-Bayesian approach that integrates the design criterion across a prior distribution on the parameter values. This approach ignores the lack of utility of certain models contained in the prior, and a case is demonstrated where the heavy focus on such hopeless models results in a design with poor performance and with wild swings in coverage probabilities for Wald-type confidence intervals. Design construction using a utility-based approach is shown to result in much more stable coverage probabilities in the area of greatest concern. The pseudo-Bayesian approach can be applied ...

Contributors
Hassler, Edgar, Montgomery, Douglas C, Silvestrini, Rachel T, et al.
Created Date
2015

In the three phases of the engineering design process (conceptual design, embodiment design and detailed design), traditional reliability information is scarce. However, there are different sources of information that provide reliability inputs while designing a new product. This research considered these sources to be further analyzed: reliability information from similar existing products denominated as parents, elicited experts' opinions, initial testing and the customer voice for creating design requirements. These sources were integrated with three novels approaches to produce reliability insights in the engineering design process, all under the Design for Reliability (DFR) philosophy. Firstly, an enhanced parenting process to assess ...

Contributors
Mejia Sanchez, Luis, Pan, Rong, Montgomery, Douglas, et al.
Created Date
2014

With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or the complexities of the information hidden within the data. Thus knowledge discovery by machine learning techniques is necessary if we want to better understand information from data. In this dissertation, we explore the topics of asymmetric loss and asymmetric data in machine learning and propose new algorithms as solutions to some of the problems in these topics. We also studied ...

Contributors
Koh, Derek, Runger, George, Wu, Tong, et al.
Created Date
2013

This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers (between 11% and 22%) of an aging population. There is only one approved therapy with limited efficacy, which results in a huge unmet need. The reason so few drugs have reached approval is a lack of a recognized therapeutic pathway with reproducible endpoints. While the interplay between blink function and ...

Contributors
Abelson, Richard Barrett, Montgomery, Douglas, Borror, Connie, et al.
Created Date
2012

This research is to address the design optimization of systems for a specified reliability level, considering the dynamic nature of component failure rates. In case of designing a mechanical system (especially a load-sharing system), the failure of one component will lead to increase in probability of failure of remaining components. Many engineering systems like aircrafts, automobiles, and construction bridges will experience this phenomenon. In order to design these systems, the Reliability-Based Design Optimization framework using Sequential Optimization and Reliability Assessment (SORA) method is developed. The dynamic nature of component failure probability is considered in the system reliability model. The Stress-Strength ...

Contributors
Bala Subramaniyan, Arun, Pan, Rong, Askin, Ronald, et al.
Created Date
2016

The complexity of supply chains (SC) has grown rapidly in recent years, resulting in an increased difficulty to evaluate and visualize performance. Consequently, analytical approaches to evaluate SC performance in near real time relative to targets and plans are important to detect and react to deviations in order to prevent major disruptions. Manufacturing anomalies, inaccurate forecasts, and other problems can lead to SC disruptions. Traditional monitoring methods are not sufficient in this respect, because com- plex SCs feature changes in manufacturing tasks (dynamic complexity) and carry a large number of stock keeping units (detail complexity). Problems are easily confounded with ...

Contributors
Liu, Lei, Runger, George, Gel, Esma, et al.
Created Date
2015

In recent years, service oriented computing (SOC) has become a widely accepted paradigm for the development of distributed applications such as web services, grid computing and cloud computing systems. In service-based systems (SBS), multiple service requests with specific performance requirements make services compete for system resources. IT service providers need to allocate resources to services so the performance requirements of customers can be satisfied. Workload and performance models are required for efficient resource management and service performance assurance in SBS. This dissertation develops two methods to understand and model the cause-effect relations of service-related activities with resources workload and service ...

Contributors
Martinez Aranda, Billibaldo Iram, Ye, Nong, Wu, Tong, et al.
Created Date
2012

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.