Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2016


Camera calibration has applications in the fields of robotic motion, geographic mapping, semiconductor defect characterization, and many more. This thesis considers camera calibration for the purpose of high accuracy three-dimensional reconstruction when characterizing ball grid arrays within the semiconductor industry. Bouguet's calibration method is used following a set of criteria with the purpose of studying the method's performance according to newly proposed standards. The performance of the camera calibration method is currently measured using standards such as pixel error and computational time. This thesis proposes the use of standard deviation of the intrinsic parameter estimation within a Monte Carlo simulation …

Contributors
Stenger, Nickolas Arthur, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2012

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of …

Contributors
Weber, Peter Christian, Papandreou-Suppappola, Antonia, Tepedelenlioglu, Cihan, et al.
Created Date
2012

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of biological threats. Currently, traditional bioinformatics tools, such as data mining classification algorithms, are used to process the large amount of peptide microarray data. However, these methods generally require training data and do not adapt to changing immune conditions or additional patient information. This work proposes advanced processing techniques to improve …

Contributors
Malin, Anna, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2013

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring …

Contributors
Huff, Daniel William, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2013

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An …

Contributors
Edla, Shwetha Reddy, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2012

Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used to identify antigen antibody binding patterns or immunosignatures. In this thesis, an advanced signal processing method is proposed to estimate epitope antigen subsequences as well as identify mimotope antigen subsequences that mimic the structure of epitopes from random-sequence peptide microarrays. The method first maps peptide sequences to linear expansions of highly-localized one-dimensional (1-D) time-varying signals and uses a time-frequency processing technique to detect recurring patterns in subsequences. This technique is matched …

Contributors
O'Donnell, Brian Nickerson, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2014

In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and uses delay-Doppler matched filter (MF) outputs as raw measurements without setting any threshold for extracting delay-Doppler estimates. The particle filter (PF) Bayesian sequential estimation approach is used with the TBD algorithm (PF-TBD) to estimate the dynamic target state. A waveform-agile TBD technique is proposed that integrates the PF-TBD with a waveform selection technique. The new approach predicts the waveform to transmit at the next time step by minimizing the predicted …

Contributors
Piwowarski, Ryan, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2011

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the …

Contributors
Miao, Lifeng, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2013

Dynamic channel selection in cognitive radio consists of two main phases. The first phase is spectrum sensing, during which the channels that are occupied by the primary users are detected. The second phase is channel selection, during which the state of the channel to be used by the secondary user is estimated. The existing cognitive radio channel selection literature assumes perfect spectrum sensing. However, this assumption becomes problematic as the noise in the channels increases, resulting in high probability of false alarm and high probability of missed detection. This thesis proposes a solution to this problem by incorporating the estimated …

Contributors
Zapp, Joseph Vincent, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2014

In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation platforms using radio frequency (RF) radar and electro-optical (EO) sensors allows for integration of complementary information from different sensors. However, there are many challenges to overcome, including tracking low signal-to-noise ratio (SNR) targets, waveform configurations that can optimize tracking performance and statistically dependent measurements. Address some of these challenges, a particle filter (PF) based recursive waveformagile track-before-detect (TBD) algorithm is developed to avoid information loss caused by conventional detection under …

Contributors
Liu, Shubo, Papandreou-Suppappola, Antonia, Duman, Tolga, et al.
Created Date
2012