Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme. In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active …

Contributors
Zeng, Ruochen, Tepedelenlioglu, Cihan, Papandreou-Suppappola, Antonia, et al.
Created Date
2017

This thesis aims to investigate the capacity and bit error rate (BER) performance of multi-user diversity systems with random number of users and considers its application to cognitive radio systems. Ergodic capacity, normalized capacity, outage capacity, and average bit error rate metrics are studied. It has been found that the randomization of the number of users will reduce the ergodic capacity. A stochastic ordering framework is adopted to order user distributions, for example, Laplace transform ordering. The ergodic capacity under different user distributions will follow their corresponding Laplace transform order. The scaling law of ergodic capacity with mean number of …

Contributors
Zeng, Ruochen, Tepedelenlioglu, Cihan, Duman, Tolga, et al.
Created Date
2012