Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2019


Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two dimensional (2-D) ultrasound imaging is very popular, three dimensional (3-D) ultrasound imaging provides distinct advantages over its 2-D counterpart by providing volumetric imaging, which leads to more accurate analysis of tumor and cysts. However, the amount of received data at the front-end of 3-D system is extremely large, making it impractical for power-constrained portable systems. In this thesis, algorithm and …

Contributors
Zhou, Jian, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2019

Signal compressed using classical compression methods can be acquired using brute force (i.e. searching for non-zero entries in component-wise). However, sparse solutions require combinatorial searches of high computations. In this thesis, instead, two Bayesian approaches are considered to recover a sparse vector from underdetermined noisy measurements. The first is constructed using a Bernoulli-Gaussian (BG) prior distribution and is assumed to be the true generative model. The second is constructed using a Gamma-Normal (GN) prior distribution and is, therefore, a different (i.e. misspecified) model. To estimate the posterior distribution for the correctly specified scenario, an algorithm based on generalized approximated message …

Contributors
Alhowaish, Abdulhakim, Richmond, Christ D, Papandreou-Suppappola, Antonia, et al.
Created Date
2019

Transportation plays a significant role in every human's life. Numerous factors, such as cost of living, available amenities, work style, to name a few, play a vital role in determining the amount of travel time. Such factors, among others, led in part to an increased need for private transportation and, consequently, leading to an increase in the purchase of private cars. Also, road safety was impacted by numerous factors such as Driving Under Influence (DUI), driver’s distraction due to the increase in the use of mobile devices while driving. These factors led to an increasing need for an Advanced Driver …

Contributors
Balaji, Venkatesh, Karam, Lina J, Papandreou-Suppappola, Antonia, et al.
Created Date
2019

The human brain controls a person's actions and reactions. In this study, the main objective is to quantify reaction time towards a change of visual event and figuring out the inherent relationship between response time and corresponding brain activities. Furthermore, which parts of the human brain are responsible for the reaction time is also of interest. As electroencephalogram (EEG) signals are proportional to the change of brain functionalities with time, EEG signals from different locations of the brain are used as indicators of brain activities. As the different channels are from different parts of our brain, identifying most relevant channels …

Contributors
Chowdhury, Mohammad Samin Nur, Bliss, Daniel W, Papandreou-Suppappola, Antonia, et al.
Created Date
2019

The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the use of physical-based models with Bayesian nonparametric methods to address the main challenges in a tracking problem. In particular, Bayesian nonparametric methods are exploited to efficiently and robustly infer object identity and learn time-dependent cardinality; together with Bayesian inference methods, they are also used to associate measurements to objects and …

Contributors
Moraffah, Bahman, Papandreou-Suppappola, Antonia, Bliss, Daniel W., et al.
Created Date
2019

Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of variations. While this is generally a hard problem because of the non-existence of analytical expressions to capture these variations, there are certain factors like geometric transforms that can be expressed analytically. Furthermore, in existing frameworks, the disentangled values are also not interpretable. The focus of this work is to disentangle these …

Contributors
Koneripalli, Kaushik, Turaga, Pavan, Papandreou-Suppappola, Antonia, et al.
Created Date
2019

A critical problem for airborne, ship board, and land based radars operating in maritime or littoral environments is the detection, identification and tracking of targets against backscattering caused by the roughness of the sea surface. Statistical models, such as the compound K-distribution (CKD), were shown to accurately describe two separate structures of the sea clutter intensity fluctuations. The first structure is the texture that is associated with long sea waves and exhibits long temporal decorrelation period. The second structure is the speckle that accounts for reflections from multiple scatters and exhibits a short temporal decorrelation period from pulse to pulse. …

Contributors
Northrop, Judith, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2019

Spike sorting is a critical step for single-unit-based analysis of neural activities extracellularly and simultaneously recorded using multi-channel electrodes. When dealing with recordings from very large numbers of neurons, existing methods, which are mostly semiautomatic in nature, become inadequate. This dissertation aims at automating the spike sorting process. A high performance, automatic and computationally efficient spike detection and clustering system, namely, the M-Sorter2 is presented. The M-Sorter2 employs the modified multiscale correlation of wavelet coefficients (MCWC) for neural spike detection. At the center of the proposed M-Sorter2 are two automatic spike clustering methods. They share a common hierarchical agglomerative modeling …

Contributors
Ma, Weichao, Si, Jennie, Papandreou-Suppappola, Antonia, et al.
Created Date
2019

Speech is generated by articulators acting on a phonatory source. Identification of this phonatory source and articulatory geometry are individually challenging and ill-posed problems, called speech separation and articulatory inversion, respectively. There exists a trade-off between decomposition and recovered articulatory geometry due to multiple possible mappings between an articulatory configuration and the speech produced. However, if measurements are obtained only from a microphone sensor, they lack any invasive insight and add additional challenge to an already difficult problem. A joint non-invasive estimation strategy that couples articulatory and phonatory knowledge would lead to better articulatory speech synthesis. In this thesis, a …

Contributors
Venkataramani, Adarsh Akkshai, Papandreou-Suppappola, Antonia, Bliss, Daniel W, et al.
Created Date
2018

As the demand for wireless systems increases exponentially, it has become necessary for different wireless modalities, like radar and communication systems, to share the available bandwidth. One approach to realize coexistence successfully is for each system to adopt a transmit waveform with a unique nonlinear time-varying phase function. At the receiver of the system of interest, the waveform received for process- ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the presence of the waveforms that are matched to the other coexisting systems. This thesis uses a time-frequency based approach to increase the SINR of a system by …

Contributors
Gattani, Vineet Sunil, Papandreou-Suppappola, Antonia, Richmond, Christ, et al.
Created Date
2018

Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus when blood vessels are close to being orthogonal to the beam direction, there are large errors in the estimation results. In this dissertation, a low cost blood flow estimation method that does not have the angle dependency of Doppler-based methods, is presented. First, a velocity estimator based on speckle tracking and …

Contributors
WEI, SIYUAN, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial. The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, …

Contributors
Li, Xiaofeng, Tepedelenlioglu, Cihan, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

Software-defined radio provides users with a low-cost and flexible platform for implementing and studying advanced communications and remote sensing applications. Two such applications include unmanned aerial system-to-ground communications channel and joint sensing and communication systems. In this work, these applications are studied. In the first part, unmanned aerial system-to-ground communications channel models are derived from empirical data collected from software-defined radio transceivers in residential and mountainous desert environments using a small (< 20 kg) unmanned aerial system during low-altitude flight (< 130 m). The Kullback-Leibler divergence measure was employed to characterize model mismatch from the empirical data. Using this measure …

Contributors
Gutierrez, Richard, Bliss, Daniel W, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

Deep learning architectures have been widely explored in computer vision and have depicted commendable performance in a variety of applications. A fundamental challenge in training deep networks is the requirement of large amounts of labeled training data. While gathering large quantities of unlabeled data is cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. Thus, developing algorithms that minimize the human effort in training deep models is of immense practical importance. Active learning algorithms automatically identify salient and exemplar samples from large amounts of unlabeled data and can augment maximal information …

Contributors
Ranganathan, Hiranmayi, Sethuraman, Panchanathan, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme. In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active …

Contributors
Zeng, Ruochen, Tepedelenlioglu, Cihan, Papandreou-Suppappola, Antonia, et al.
Created Date
2017

This thesis addresses two problems in digital baseband design of wireless communication systems, namely, those in Internet of Things (IoT) terminals that support long range communications and those in full-duplex systems that are designed for high spectral efficiency. IoT terminals for long range communications are typically based on Orthogonal Frequency-Division Multiple Access (OFDMA) and spread spectrum technologies. In order to design an efficient baseband architecture for such terminals, the workload profiles of both systems are analyzed. Since frame detection unit has by far the highest computational load, a simple architecture that uses only a scalar datapath is proposed. To optimize …

Contributors
Wu, Shunyao, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2017

The radar performance of detecting a target and estimating its parameters can deteriorate rapidly in the presence of high clutter. This is because radar measurements due to clutter returns can be falsely detected as if originating from the actual target. Various data association methods and multiple hypothesis filtering approaches have been considered to solve this problem. Such methods, however, can be computationally intensive for real time radar processing. This work proposes a new approach that is based on the unsupervised clustering of target and clutter detections before target tracking using particle filtering. In particular, Gaussian mixture modeling is first used …

Contributors
Freeman, Matthew Gregory, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2016

Full-duplex communication has attracted significant attention as it promises to increase the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks add new dimensions and capabilities to cooperative networks by facilitating simultaneous transmission and reception and improving data rates. When a relay in a multi-hop full-duplex system amplifies and forwards its received signals, due to the presence of self-interference, the input-output relationship is determined by recursive equations. This thesis introduces a signal flow graph approach to solve the problem of finding the input-output relationship of a multi-hop amplify-and-forward full-duplex relaying system using Mason's gain formula. Even when all links have flat …

Contributors
Sureshbabu, Abhilash, Tepedelenlioglu, Cihan, Papandreou-Suppappola, Antonia, et al.
Created Date
2016

Biological and biomedical measurements, when adequately analyzed and processed, can be used to impart quantitative diagnosis during primary health care consultation to improve patient adherence to recommended treatments. For example, analyzing neural recordings from neurostimulators implanted in patients with neurological disorders can be used by a physician to adjust detrimental stimulation parameters to improve treatment. As another example, biosequences, such as sequences from peptide microarrays obtained from a biological sample, can potentially provide pre-symptomatic diagnosis for infectious diseases when processed to associate antibodies to specific pathogens or infectious agents. This work proposes advanced statistical signal processing and machine learning methodologies …

Contributors
Maurer, Alexander, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2016

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce interference between systems. This work studies the radar and communications systems coexistence problem using two main approaches. The first approach develops methodologies to increase radar target tracking performance under low signal-to-interference-plus-noise ratio (SINR) conditions due to the coexistence of strong communications interference. The second approach jointly optimizes the performance of both …

Contributors
Kota, John Stephen, Papandreou-Suppappola, Antonia, Berisha, Visar, et al.
Created Date
2016