Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2019


Camera calibration has applications in the fields of robotic motion, geographic mapping, semiconductor defect characterization, and many more. This thesis considers camera calibration for the purpose of high accuracy three-dimensional reconstruction when characterizing ball grid arrays within the semiconductor industry. Bouguet's calibration method is used following a set of criteria with the purpose of studying the method's performance according to newly proposed standards. The performance of the camera calibration method is currently measured using standards such as pixel error and computational time. This thesis proposes the use of standard deviation of the intrinsic parameter estimation within a Monte Carlo simulation …

Contributors
Stenger, Nickolas Arthur, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2012

I propose a new communications scheme where signature signals are used to carry digital data by suitably modulating the signal parameters with information bits. One possible application for the proposed scheme is in underwater acoustic (UWA) communications; with this motivation, I demonstrate how it can be applied in UWA communications. In order to do that, I exploit existing parameterized models for mammalian sounds by using them as signature signals. Digital data is transmitted by mapping vectors of information bits to a carefully designed set of parameters with values obtained from the biomimetic signal models. To complete the overall system design, …

Contributors
ElMoslimany, Ahmad Amr, Duman, Tolga M, Papandreou-Suppappola, Antonia, et al.
Created Date
2015

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of …

Contributors
Weber, Peter Christian, Papandreou-Suppappola, Antonia, Tepedelenlioglu, Cihan, et al.
Created Date
2012

Immunosignaturing is a medical test for assessing the health status of a patient by applying microarrays of random sequence peptides to determine the patient's immune fingerprint by associating antibodies from a biological sample to immune responses. The immunosignature measurements can potentially provide pre-symptomatic diagnosis for infectious diseases or detection of biological threats. Currently, traditional bioinformatics tools, such as data mining classification algorithms, are used to process the large amount of peptide microarray data. However, these methods generally require training data and do not adapt to changing immune conditions or additional patient information. This work proposes advanced processing techniques to improve …

Contributors
Malin, Anna, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2013

Parkinson's disease is a neurodegenerative condition diagnosed on patients with clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated number of patients living with Parkinson's disease around the world is seven to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor signs of Parkinson's disease patients. It is an advanced surgical technique that is used when drug therapy is no longer sufficient for Parkinson's disease patients. DBS alleviates the motor symptoms of Parkinson's disease by targeting the subthalamic nucleus using high-frequency electrical stimulation. This work proposes a behavior recognition model for patients with …

Contributors
Dutta, Arindam, Papandreou-Suppappola, Antonia, Holbert, Keith E., et al.
Created Date
2015

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring …

Contributors
Huff, Daniel William, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2013

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An …

Contributors
Edla, Shwetha Reddy, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2012

Software-defined radio provides users with a low-cost and flexible platform for implementing and studying advanced communications and remote sensing applications. Two such applications include unmanned aerial system-to-ground communications channel and joint sensing and communication systems. In this work, these applications are studied. In the first part, unmanned aerial system-to-ground communications channel models are derived from empirical data collected from software-defined radio transceivers in residential and mountainous desert environments using a small (< 20 kg) unmanned aerial system during low-altitude flight (< 130 m). The Kullback-Leibler divergence measure was employed to characterize model mismatch from the empirical data. Using this measure …

Contributors
Gutierrez, Richard, Bliss, Daniel W, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact …

Contributors
Muralidhar, Ashwini, Saripalli, Srikanth, Papandreou-Suppappola, Antonia, et al.
Created Date
2011

Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used to identify antigen antibody binding patterns or immunosignatures. In this thesis, an advanced signal processing method is proposed to estimate epitope antigen subsequences as well as identify mimotope antigen subsequences that mimic the structure of epitopes from random-sequence peptide microarrays. The method first maps peptide sequences to linear expansions of highly-localized one-dimensional (1-D) time-varying signals and uses a time-frequency processing technique to detect recurring patterns in subsequences. This technique is matched …

Contributors
O'Donnell, Brian Nickerson, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2014