Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring …

Contributors
Huff, Daniel William, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2013

This dissertation presents the development of structural health monitoring and prognostic health management methodologies for complex structures and systems in the field of mechanical engineering. To overcome various challenges historically associated with complex structures and systems such as complicated sensing mechanisms, noisy information, and large-size datasets, a hybrid monitoring framework comprising of solid mechanics concepts and data mining technologies is developed. In such a framework, the solid mechanics simulations provide additional intuitions to data mining techniques reducing the dependence of accuracy on the training set, while the data mining approaches fuse and interpret information from the targeted system enabling the …

Contributors
Li, Guoyi, Chattopadhyay, Aditi, Mignolet, Marc, et al.
Created Date
2019