Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring …

Huff, Daniel William, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date

As the demand for wireless systems increases exponentially, it has become necessary for different wireless modalities, like radar and communication systems, to share the available bandwidth. One approach to realize coexistence successfully is for each system to adopt a transmit waveform with a unique nonlinear time-varying phase function. At the receiver of the system of interest, the waveform received for process- ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the presence of the waveforms that are matched to the other coexisting systems. This thesis uses a time-frequency based approach to increase the SINR of a system by …

Gattani, Vineet Sunil, Papandreou-Suppappola, Antonia, Richmond, Christ, et al.
Created Date