Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2012 2019


Factory production is stochastic in nature with time varying input and output processes that are non-stationary stochastic processes. Hence, the principle quantities of interest are random variables. Typical modeling of such behavior involves numerical simulation and statistical analysis. A deterministic closure model leading to a second order model for the product density and product speed has previously been proposed. The resulting partial differential equations (PDE) are compared to discrete event simulations (DES) that simulate factory production as a time dependent M/M/1 queuing system. Three fundamental scenarios for the time dependent influx are studied: An instant step up/down of the mean ...

Contributors
Wienke, Matthew Richard, Armbruster, Dieter, Jones, Donald, et al.
Created Date
2015

The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for ...

Contributors
Walker, Phillip, Tang, Wenbo, Kostelich, Eric, et al.
Created Date
2018

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are ...

Contributors
Denker, Dennis, Gelb, Anne, Archibald, Richard, et al.
Created Date
2016

Earth-system models describe the interacting components of the climate system and technological systems that affect society, such as communication infrastructures. Data assimilation addresses the challenge of state specification by incorporating system observations into the model estimates. In this research, a particular data assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is applied to the ionosphere, which is a domain of practical interest due to its effects on infrastructures that depend on satellite communication and remote sensing. This dissertation consists of three main studies that propose strategies to improve space- weather specification during ionospheric extreme events, but are generally ...

Contributors
Durazo, Juan Alberto, Kostelich, Eric J., Mahalov, Alex, et al.
Created Date
2018

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most ...

Contributors
Ilkturk, Utku, Gelb, Anne, Platte, Rodrigo, et al.
Created Date
2015

A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an exact analytical solution of the governing equations. The instability of the basic state to perturbations is first studied with linear stability analysis (Floquet analysis), revealing a multitude of intersecting synchronous and subharmonic resonance tongues in parameter space. A modal reduction method for determining the locus of basic state instability is ...

Contributors
Yalim, Jason, Welfert, Bruno D., Lopez, Juan M., et al.
Created Date
2019

Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and electric fields in the Maxwell's equations. In addition, the methods studied here are meshfree, and are suitable for problems defined on complex domains, where mesh generation is computationally expensive or inaccurate, or for problems where the data is only available at scattered locations. The contributions of this work include a ...

Contributors
Araujo Mitrano, Arthur, Platte, Rodrigo, Wright, Grady, et al.
Created Date
2016

Inverse problems model real world phenomena from data, where the data are often noisy and models contain errors. This leads to instabilities, multiple solution vectors and thus ill-posedness. To solve ill-posed inverse problems, regularization is typically used as a penalty function to induce stability and allow for the incorporation of a priori information about the desired solution. In this thesis, high order regularization techniques are developed for image and function reconstruction from noisy or misleading data. Specifically the incorporation of the Polynomial Annihilation operator allows for the accurate exploitation of the sparse representation of each function in the edge domain. ...

Contributors
Scarnati, Theresa Ann, Gelb, Anne, Platte, Rodrigo, et al.
Created Date
2018

The three-dimensional flow contained in a rapidly rotating circular split cylinder is studied numerically solving the Navier--Stokes equations. The cylinder is completely filled with fluid and is split at the midplane. Three different types of boundary conditions were imposed, leading to a variety of instabilities and complex flow dynamics. The first configuration has a strong background rotation and a small differential rotation between the two halves. The axisymmetric flow was first studied identifying boundary layer instabilities which produce inertial waves under some conditions. Limit cycle states and quasiperiodic states were found, including some period doubling bifurcations. Then, a three-dimensional study ...

Contributors
Gutierrez Castillo, Paloma, Lopez, Juan M., Herrmann, Marcus, et al.
Created Date
2017

Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on ...

Contributors
Vega-Guzman, Jose M., Sulov, Sergei K, Castillo-Chavez, Carlos, et al.
Created Date
2013