Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




With internet traffic being bursty in nature, Dynamic Bandwidth Allocation(DBA) Algorithms have always been very important for any broadband access network to utilize the available bandwidth effciently. It is no different for Passive Optical Networks(PON), which are networks based on fiber optics in the physical layer of TCP/IP stack or OSI model, which in turn increases the bandwidth in the upper layers. The work in this thesis covers general description of basic DBA Schemes and mathematical derivations that have been established in research. We introduce a Novel Survey Topology that classifes DBA schemes based on their functionality. The novel perspective …

Contributors
Mercian, Anu, Reisslein, Martin, Mcgarry, Michael, et al.
Created Date
2012

A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning of a large WMN into several smaller WMN clusters, whereby each cluster is served by an Optical Network Unit (ONU) of the PON, is examined. Existing WMN throughput-delay analysis techniques considering the mean load of the nodes at a given hop distance from a gateway (ONU) are unsuitable for the …

Contributors
Chen, Po-Yen, Reisslein, Martin, Seeling, Patrick, et al.
Created Date
2015

Emerging modular cable network architectures distribute some cable headend functions to remote nodes that are located close to the broadcast cable links reaching the cable modems (CMs) in the subscriber homes and businesses. In the Remote- PHY (R-PHY) architecture, a Remote PHY Device (RPD) conducts the physical layer processing for the analog cable transmissions, while the headend runs the DOCSIS medium access control (MAC) for the upstream transmissions of the distributed CMs over the shared cable link. In contrast, in the Remote MACPHY (R-MACPHY) ar- chitecture, a Remote MACPHY Device (RMD) conducts both the physical and MAC layer processing. The …

Contributors
Alharbi, Ziyad Ghazai, Reisslein, Martin, Thyagaturu, Akhilesh, et al.
Created Date
2019

Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric for IO and switch virtualization. The switch fabric has little data buffering, allowing up to 512 physical 10 Gb/s PCIe2.0 lanes to be connected via a switch fabric. The switch is scalable with adapters running multiple adaptation protocols, such as Ethernet over PCIe, PCIe over Internet, or FibreChannel over Ethernet. …

Contributors
Luo, Haojun, Hui, Joseph, Song, Hongjiang, et al.
Created Date
2013

The integration of passive optical networks (PONs) and wireless mesh networks (WMNs) into Fiber-Wireless (FiWi) networks has recently emerged as a promising strategy for providing flexible network services at relative high transmission rates. This work investigates the effectiveness of localized routing that prioritizes transmissions over the local gateway to the optical network and avoids wireless packet transmissions in radio zones that do not contain the packet source or destination. Existing routing schemes for FiWi networks consider mainly hop-count and delay metrics over a flat WMN node topology and do not specifically prioritize the local network structure. The combination of clustered …

Contributors
Dashti, Yousef, Reisslein, Martin, Zhang, Yanchao, et al.
Created Date
2016

LTE (Long Term Evolution) represents an emerging technology that will change how service providers backhaul user traffic to their infrastructure over IP networks. To support growing mobile bandwidth demand, an EPON backhaul infrastructure will make possible realtime high bandwidth applications. LTE backhaul planning and deployment scenarios are important factors to network success. In this thesis, we are going to study the effect of LTE backhaul on Optical network, in an attempt to interoperate Fiber and Wireless networks. This project is based on traffic forecast for the LTE networks. Traffic models are studied and gathered from literature to reflect applications accurately. …

Contributors
Alharbi, Ziyad, Reisslein, Martin, Zhang, Yanchao, et al.
Created Date
2014

Access Networks provide the backbone to the Internet connecting the end-users to the core network thus forming the most important segment for connectivity. Access Networks have multiple physical layer medium ranging from fiber cables, to DSL links and Wireless nodes, creating practically-used hybrid access networks. We explore the hybrid access network at the Medium ACcess (MAC) Layer which receives packets segregated as data and control packets, thus providing the needed decoupling of data and control plane. We utilize the Software Defined Networking (SDN) principle of centralized processing with segregated data and control plane to further extend the usability of our …

Contributors
Mercian, Anu, Reisslein, Martin, McGarry, Michael P, et al.
Created Date
2015

The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g/n and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for a wireless system (using a 802.11a/b/g/n and cellular protocols as a model) that can scale to support thousands of users simultaneously (say in a large office building, super chain store, etc.) or in a small, but very dense communication RF region. Elements of communication between a base station and a …

Contributors
James, Frank Lee, Reisslein, Martin, Ying, Lei, et al.
Created Date
2014

A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is a high-speed short-distance communication protocol largely used in motherboard-level interconnects. The total bandwidth of a PCI Express 3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for PCI Express such as buffer speed, address mapping, Quality of Service and power consumption need to …

Contributors
Chen, Caiyi, Hui, Joseph, Reisslein, Martin, et al.
Created Date
2012

LTE-Advanced networks employ random access based on preambles transmitted according to multi-channel slotted Aloha principles. The random access is controlled through a limit <italic>W</italic> on the number of transmission attempts and a timeout period for uniform backoff after a collision. We model the LTE-Advanced random access system by formulating the equilibrium condition for the ratio of the number of requests successful within the permitted number of transmission attempts to those successful in one attempt. We prove that for <italic>W</italic>&le;8 there is only one equilibrium operating point and for <italic>W</italic>&ge;9 there are three operating points if the request load &rho; is …

Contributors
Tyagi, Revak Raj, Reisslein, Martin, Tepedelenlioglu, Cihan, et al.
Created Date
2014