Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

This is a two part thesis: Part 1 of this thesis determines the most dominant failure modes of field aged photovoltaic (PV) modules using experimental data and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 5900 crystalline-Si glass/polymer modules fielded for 6 to 16 years in three different photovoltaic (PV) power plants with different mounting systems under the hot-dry desert climate of Arizona are evaluated. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is performed for each PV power plant to determine the dominant failure modes in the modules …

Shrestha, Sanjay Mohan, Tamizhmani, Govindsamy, Srinivasan, Devrajan, et al.
Created Date

This is a two-part thesis: Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules of five different technologies with air/glass interface. However, the modules that are installed in the field would invariably develop a soil layer with varying thickness depending on the site condition, rainfall and tilt angle. The soiled module will have the air/soil/glass interface rather than air/glass interface. This study investigates the …

Boppana, Sravanthi, Tamizhmani, Govindasamy, Srinivasan, Devarajan, et al.
Created Date

In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due to this fact and to calculate LCOE (levelized cost of energy), it is understandably becoming more important to comprehend the behavior of these systems as a whole by calculating two key data: the rate at which modules are degrading in the field; the trend (linear or nonlinear) in which the …

Raupp, Christopher, Tamizhmani, Govindasamy, Srinivasan, Devarajan, et al.
Created Date