Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the second part of the thesis deals with the statistical degradation rate analysis. In the first part, a detailed analysis on the performance or financial risk related to each defect found in multiple PV power plants across various climatic regions of the USA is presented by assigning a risk priority number …

Contributors
Sundarajan, Prasanna, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2016

In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down on cost to produce the sensors as well as enabling the manufacture of custom sensors in different sizes and different configurations. Currently commercially available sensors are expensive and are usually designed for very specific applications. By creating these same types of sensors using new methods and materials, these new sensors …

Contributors
Casanova, Lucas Montgomery, Redkar, Sangram, Rogers, Bradley, et al.
Created Date
2018

Research was conducted to quantify the energy and cost savings of two different domestic solar water heating systems compared to an all-electric water heater for a four-person household in Phoenix, Arizona. The knowledge gained from this research will enable utilities to better align incentives and consumers to make more informed decisions prior to purchasing a solar water heater. Daily energy and temperature data were collected in a controlled, closed environment lab. Three mathematical models were designed in TRNSYS 17, a transient system simulation tool. The data from the lab were used to validate the TRNSYS models, and the TRNSYS results …

Contributors
Defresart, Edouard Thomas, Rogers, Bradley, Arizona State University
Created Date
2012

The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV modules fielded in New York (cold climate) over 18 years have been analyzed. All the ten modules were manufactured by the same manufacturer with glass/EVA/cell/EVA/back sheet construction. The activation energy for the encapsulant browning is calculated using the degradation rates of short-circuit current (Isc, the response parameter), weather data (temperature, …

Contributors
Veerendra Kumar, Deepak Jain, Tamizhmani, Govindasamy, Tamizhmani, Govindasamy, et al.
Created Date
2016

This is a two part thesis: Part 1 of this thesis determines the most dominant failure modes of field aged photovoltaic (PV) modules using experimental data and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 5900 crystalline-Si glass/polymer modules fielded for 6 to 16 years in three different photovoltaic (PV) power plants with different mounting systems under the hot-dry desert climate of Arizona are evaluated. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is performed for each PV power plant to determine the dominant failure modes in the modules …

Contributors
Shrestha, Sanjay Mohan, Tamizhmani, Govindsamy, Srinivasan, Devrajan, et al.
Created Date
2014

The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has the potential to improve the efficiency of solar hot water systems. Rather than being used to produce steam to generate electricity, the stored thermal energy would be used to heat water on-demand well after the sun sets. The scope of this thesis was to design, analyze, build, and test a …

Contributors
Petre, Andrew Scott Lewis, Rajadas, John N, Madakannan, Arunachalanadar, et al.
Created Date
2015

With the need to address the world's growing energy demand, many new alternative and renewable energy sources are being researched and developed. Many of these technologies are in their infancy, still being too inefficient or too costly to implement on a large scale. This list of alternative energies include biofuels, geothermal power, solar energy, wind energy and hydroelectric power. This thesis focuses on developing a concentrating solar thermal energy unit for the application of an on-demand hot water system with phase change material. This system already has a prototype constructed and needs refinement in several areas in order to increase …

Contributors
Donovan, Benjamin James, Rajadas, John, Kannan, Arunachala, et al.
Created Date
2016

Measuring and estimating solar resource availability is critical for assessing new sites for solar energy generation. This includes beam radiation, diffuse radiation, and total incident radiation. Total incident radiation is pertinent to solar photovoltaic (PV) output and low-temperature solar thermal applications whereas beam radiation is used for concentrating solar power (CSP). Global horizontal insolation (GHI) data are most commonly available of any solar radiation measurement, yet these data cannot be directly applied to solar power generator estimation because solar PV panels and solar CSP collectors are not parallel to the earth’s surface. In absence of additional measured data, GHI data …

Contributors
Singh, Uday, Johnson, Nathan, Rogers, Bradley, et al.
Created Date
2016

The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent “uncontrolled” nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves—namely, distributed …

Contributors
Cardwell, Joseph Farrand, Johnson, Nathan, Rogers, Bradley, et al.
Created Date
2015

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's …

Contributors
Davies, Russell, Rogers, Bradley, Palmgren, Dale, et al.
Created Date
2013