Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


The photovoltaic (PV) modules are primarily characterized for their performance with respect to incident irradiance and operating temperature. This work deals with data collection and automation of data processing for the performance and thermal characterizations of PV modules. This is a two-part thesis: The primary part (part-1) deals with the software automation to generate performance matrix as per IEC 61853-1 standard using MPPT (maximum power point tracking) data at the module or system level; the secondary part (part-2) deals with the software automation to predict temperature of rooftop PV modules using the thermal model coefficients generated in the previous studies …

Contributors
Koka, Kartheek, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2011

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the …

Contributors
Tatapudi, Sai Ravi Vasista, Tamizhmani, Govindasamy, Srinivasan, Devarajan, et al.
Created Date
2012

Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new degradation mechanisms. These new degradation mechanisms are not recognized by qualification stress tests. To study and model the effect of high system voltages, recently, potential induced degradation (PID) test method has been introduced. Using PID studies, it has been reported that high voltage failure rates are essentially due to increased …

Contributors
Goranti, Sandhya, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2011

Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC 61853 – 1. In the current research, an automation software tool developed by a previous researcher of ASU – PRL (ASU Photovoltaic Reliability Laboratory) is validated at various stages. Also in the current research, the power rating of PV modules for four different manufacturers is carried out according to IEC …

Contributors
Vemula, Meena Gupta, Tamizhmani, Govindasamy, Macia, Narcio F., et al.
Created Date
2012

This study evaluates the potential profitability and environmental benefit available by providing renewable energy from solar- or wind-generated sources to electric vehicle drivers at public charging stations, also known as electric vehicle service equipment (EVSE), in the U.S. Past studies have shown above-average interest in renewable energy by drivers of plug-in electric vehicles (PEVs), though no study has evaluated the profitability and environmental benefit of selling renewable energy to PEV drivers at public EVSE. Through an online survey of 203 U.S.-wide PEV owners and lessees, information was collected on (1) current PEV and EVSE usage, (2) potential willingness to pay …

Contributors
Nienhueser, Ian Andrew, Qiu, Yueming, Rogers, Bradley, et al.
Created Date
2014

Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses--utility-side, consumer-side, and combined analyses--to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations--Chicago, Phoenix, Seattle--with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, …

Contributors
Arnold, Michael, Johnson, Nathan G, Rogers, Bradley, et al.
Created Date
2014

Human running requires extensive training and conditioning for an individual to maintain high speeds (greater than 10mph) for an extended duration of time. Studies have shown that running at peak speeds generates a high metabolic cost due to the use of large muscle groups in the legs associated with the human gait cycle. Applying supplemental external and internal forces to the human body during the gait cycle has been shown to decrease the metabolic cost for walking, allowing individuals to carry additional weight and walk further distances. Significant research has been conducted to reduce the metabolic cost of walking, however, …

Contributors
Kerestes, Jason, Sugar, Thomas, Redkar, Sangram, et al.
Created Date
2014

To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of the PV module. This thesis presents two studies that focus on investigating the soiling effect on the performance of the PV modules installed in Metro Phoenix area. The first study was conducted to investigate the optimum cleaning frequency for cleaning PV modules installed in Mesa, AZ. By monitoring the soiling …

Contributors
Naeem, Mohammad, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2014

While the implementation of both mild hybrid and start-stop technology is widespread as a factory option in newer vehicles, the adaptation of hybrid technology to older or unequipped vehicles has not been fully realized. As such, a straight forward hybrid conversion system that is easily adapted to different vehicles regardless of drivetrain configuration, has been developed and applied to a test vehicle for less than $2,000. System performance was recorded both before and after hybridization using real world drive cycle tracking charts. The vehicle established a fuel economy baseline of 22.93 mpg, and achieved 26.58 mpg after the conversion. This …

Contributors
Beeney, Tyler, Rogers, Bradley, Madakannan, Arunachalanadar, et al.
Created Date
2012

Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent covers and refractive index prior to develop a solar water heater with improved optical efficiency and thermal efficiency for the collector. Numerical simulation is conducted on the performance of the liquid flat plate collector for July 21st and October 21st from 8 am to 4 pm with different refractive index …

Contributors
Supriti, Shahina Parvin, Rogers, Bradley, Madakannan, Arunachalanadar, et al.
Created Date
2015