Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Date Range
2012 2019


With the need to address the world's growing energy demand, many new alternative and renewable energy sources are being researched and developed. Many of these technologies are in their infancy, still being too inefficient or too costly to implement on a large scale. This list of alternative energies include biofuels, geothermal power, solar energy, wind energy and hydroelectric power. This thesis focuses on developing a concentrating solar thermal energy unit for the application of an on-demand hot water system with phase change material. This system already has a prototype constructed and needs refinement in several areas in order to increase …

Contributors
Donovan, Benjamin James, Rajadas, John, Kannan, Arunachala, et al.
Created Date
2016

The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV modules fielded in New York (cold climate) over 18 years have been analyzed. All the ten modules were manufactured by the same manufacturer with glass/EVA/cell/EVA/back sheet construction. The activation energy for the encapsulant browning is calculated using the degradation rates of short-circuit current (Isc, the response parameter), weather data (temperature, …

Contributors
Veerendra Kumar, Deepak Jain, Tamizhmani, Govindasamy, Tamizhmani, Govindasamy, et al.
Created Date
2016

As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the second part of the thesis deals with the statistical degradation rate analysis. In the first part, a detailed analysis on the performance or financial risk related to each defect found in multiple PV power plants across various climatic regions of the USA is presented by assigning a risk priority number …

Contributors
Sundarajan, Prasanna, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2016

The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new dimension of complexity has emerged in the understanding of alloy microstructure development, hence, potential alloy development opportunity for IN718. This study is a broad stroke at discovering possible alternate microstructures developing in Direct-Metal-Laser-Sintering (DMLS) processed IN718 compared to those in conventional wrought IN718. The main inspiration for this study came …

Contributors
Rogers, Blake Kenton, Tasooji, Amaneh, Petuskey, William, et al.
Created Date
2017

The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease due to potential induced degradation, etc. Several PV modules together in series makes up a string, and in a power plant there are a number of these strings in parallel which can be referred to as an array. Ideally, PV modules in a string should be identically matched to attain …

Contributors
Tahghighi, Arash, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2019