Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Language
  • English
Date Range
2011 2019


The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first …

Contributors
De Gregorio, Michael, Santos, Veronica J., Artemiadis, Panagiotis K., et al.
Created Date
2013

In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm …

Contributors
Padmanaban, Subash, Greger, Bradley, Santello, Marco, et al.
Created Date
2017

Locomotion is of prime importance in enabling human beings to effectively respond in space and time to meet different needs. Approximately 2 million Americans live with an amputation with most of those amputations being of the lower limbs. To advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt performance at a level of intelligence seen in human walking. As such, this thesis focuses on the mechanisms involved during human walking, while transitioning from rigid to compliant surfaces such as from pavement to sand, grass or granular media. Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as …

Contributors
Obeng, Ruby Afriyie, Artemiadis, Panagiotis, Santello, Marco, et al.
Created Date
2019

Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after activities. Electrical neurostimulation based on the "Gate Theory of Pain" is a known to way to reduce pain but current devices to do this are bulky and not well suited to implantation in peripheral tissues. There is also an increased risk associated with surgery which limits the use of these …

Contributors
Zong, Xi, Towe, Bruce, Kleim, Jeffrey, et al.
Created Date
2014

Object manipulation is a common sensorimotor task that humans perform to interact with the physical world. The first aim of this dissertation was to characterize and identify the role of feedback and feedforward mechanisms for force control in object manipulation by introducing a new feature based on force trajectories to quantify the interaction between feedback- and feedforward control. This feature was applied on two grasp contexts: grasping the object at either (1) predetermined or (2) self-selected grasp locations (“constrained” and “unconstrained”, respectively), where unconstrained grasping is thought to involve feedback-driven force corrections to a greater extent than constrained grasping. This …

Contributors
Mojtahedi, Keivan, Santello, Marco, Greger, Bradley, et al.
Created Date
2017

Humans moving in the environment must frequently change walking speed and direction to negotiate obstacles and maintain balance. Maneuverability and stability requirements account for a significant part of daily life. While constant-average-velocity (CAV) human locomotion in walking and running has been studied extensively unsteady locomotion has received far less attention. Although some studies have described the biomechanics and neurophysiology of maneuvers, the underlying mechanisms that humans employ to control unsteady running are still not clear. My dissertation research investigated some of the biomechanical and behavioral strategies used for stable unsteady locomotion. First, I studied the behavioral level control of human …

Contributors
Qiao, Mu, Jindrich, Devin L, Dounskaia, Natalia, et al.
Created Date
2012

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of …

Contributors
Chattopadhyay, Rita, Panchanathan, Sethuraman, Ye, Jieping, et al.
Created Date
2013

Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of grip and load force rates during the period between initial contact with the object and object lift. However, this has not been validated in tasks that do not constrain digit placement. The purposes of this thesis were (1) to validate the hypothesis that force rate profiles are indicative of the control …

Contributors
Cooperhouse, Michael Aaron, Santello, Marco, Helms Tillery, Stephen, et al.
Created Date
2011

Robust and stable decoding of neural signals is imperative for implementing a useful neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was trained to perform combined flexions of the thumb, index and middle fingers in addition to individual flexions and extensions of the same digits. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon action potential firing rates. The effect of four …

Contributors
Padmanaban, Subash, Greger, Bradley, Santello, Marco, et al.
Created Date
2015

The human hand is a complex biological system. Humans have evolved a unique ability to use the hand for a wide range of tasks, including activities of daily living such as successfully grasping and manipulating objects, i.e., lifting a cup of coffee without spilling. Despite the ubiquitous nature of hand use in everyday activities involving object manipulations, there is currently an incomplete understanding of the cortical sensorimotor mechanisms underlying this important behavior. One critical aspect of natural object grasping is the coordination of where the fingers make contact with an object and how much force is applied following contact. Such …

Contributors
McGurrin, Patrick M., Santello, Marco, Helms-Tillery, Steve, et al.
Created Date
2017

Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer for human interactions, more robust in unknown environments and simpler to control than their rigid counterparts. A current problem in soft robotics is the lack of seamless integration of soft grippers into wearable devices, which is in part due to the use of elastomeric materials used for the creation of …

Contributors
Lopez Arellano, Francisco, Santello, Marco, Zhang, Wenlong, et al.
Created Date
2019

Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they have demonstrated therapeutic utility and clinical efficacy for neurological and psychiatric disorders. When applied for therapeutic applications, these techniques suffer from limitations that hinder the progression of its intended use to treat compromised brain function. DBS requires an invasive surgical procedure that surfaces complications from infection, longevity of electrical components, …

Contributors
Tufail, Yusuf, Tyler, William J, Duch, Carsten, et al.
Created Date
2011

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation …

Contributors
Fu, Qiushi, Santello, Marco, Helms Tillery, Stephen, et al.
Created Date
2013

Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present study investigated the effects of arm configuration on the interaction between planning noise and execution noise. Subjects performed reaching movements to three targets located in a frontal plane. At the starting position, subjects matched one of two desired arm configuration 'templates' namely "adducted" and "abducted". These arm configurations were obtained …

Contributors
Lakshminarayanan, Kishor, Buneo, Christopher, Santello, Marco, et al.
Created Date
2013

Properly deciding to engage in or to withhold an action is a critical ability for goal-oriented movement control. Such decision may be driven by expected value from the choice of action but associating physical effort may discount such value. A novel anticipatory stopping task was developed to investigate effort discounted decision process potentially present in proactive inhibitory control. Subjects performed or abstained from target reach if they believed it was a Go or Stop trial respectively. Reward was awarded to a reach, correctly timed to hit a target at the same time as the moving bar in Go trials. During …

Contributors
Tsuchiya, Toshiki, Santello, Marco, Fine, Justin, et al.
Created Date
2018

Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and a neural network adapt as learning progresses. In this dissertation, single units in the medial and lateral agranular (AGm and AGl) cortices were recorded as rats learned a directional choice task. The task required the rat to make a left/right side lever press if a light cue appeared on the …

Contributors
Mao, Hongwei, Si, Jennie, Buneo, Christopher, et al.
Created Date
2014

Prosthetic users abandon devices due to difficulties performing tasks without proper graded or interpretable feedback. The inability to adequately detect and correct error of the device leads to failure and frustration. In advanced prostheses, peripheral nerve stimulation can be used to deliver sensations, but standard schemes used in sensorized prosthetic systems induce percepts inconsistent with natural sensations, providing limited benefit. Recent uses of time varying stimulation strategies appear to produce more practical sensations, but without a clear path to pursue improvements. This dissertation examines the use of physiologically based stimulation strategies to elicit sensations that are more readily interpretable. A …

Contributors
Tanner, Justin Cody, Helms Tillery, Stephen I, Santos, Veronica J, et al.
Created Date
2017

Humans constantly rely on a complex interaction of a variety of sensory modalities in order to complete even the simplest of daily tasks. For reaching and grasping to interact with objects, the visual, tactile, and proprioceptive senses provide the majority of the information used. While vision is often relied on for many tasks, most people are able to accomplish common daily rituals without constant visual attention, instead relying mainly on tactile and proprioceptive cues. However, amputees using prosthetic arms do not have access to these cues, making tasks impossible without vision. Even tasks with vision can be incredibly difficult as …

Contributors
Olson, Markey, Helms-Tillery, Stephen, Buneo, Christopher, et al.
Created Date
2016

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to …

Contributors
Whitsell, Bryan, Artemiadis, Panagiotis, Santello, Marco, et al.
Created Date
2014

The interaction between humans and robots has become an important area of research as the diversity of robotic applications has grown. The cooperation of a human and robot to achieve a goal is an important area within the physical human-robot interaction (pHRI) field. The expansion of this field is toward moving robotics into applications in unstructured environments. When humans cooperate with each other, often there are leader and follower roles. These roles may change during the task. This creates a need for the robotic system to be able to exchange roles with the human during a cooperative task. The unstructured …

Contributors
Whitsell, Bryan Douglas, Artemiadis, Panagiotis, Santello, Marco, et al.
Created Date
2017

The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain unclear. Thus several studies have been performed to elucidate the role and influence of sensorimotor noise on movement variability. The first study focuses on sensory integration and movement planning across the reaching workspace. An experiment was designed to examine the relative contributions of vision and proprioception to movement planning by …

Contributors
Apker, Gregory, Buneo, Christopher A, Helms Tillery, Stephen, et al.
Created Date
2012

Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability …

Contributors
Overstreet, Cynthia Kay, Helms Tillery, Stephen I, Santos, Veronica, et al.
Created Date
2013

In order to successfully implement a neural prosthetic system, it is necessary to understand the control of limb movements and the representation of body position in the nervous system. As this development process continues, it is becoming increasingly important to understand the way multiple sensory modalities are used in limb representation. In a previous study, Shi et al. (2013) examined the multimodal basis of limb position in the superior parietal lobule (SPL) as monkeys reached to and held their arm at various target locations in a frontal plane. Visual feedback was withheld in half the trials, though non-visual (i.e. somatic) …

Contributors
Dyson, Keith, Buneo, Christopher A, Helms-Tillery, Stephen I, et al.
Created Date
2013

Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant improvements in motor function is rarely given due to the constraints of our current health care system. Research reported in this dissertation contributes towards developing adjuvant therapies that may augment the impact of motor rehabilitation and improve functional outcome. These studies have demonstrated reorganization of maps within motor cortex as …

Contributors
Warraich, Zuha, Kleim, Jeffrey A, Stabenfeldt, Sarah, et al.
Created Date
2013

The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a larger influence on the motor state changes of another; the coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects emerge when task or biomechanical asymmetries are imputed between actors. Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were recovered …

Contributors
Fine, Justin Michael, Amazeen, Eric L., Amazeen, Polemnia G., et al.
Created Date
2015

Understanding human-human interactions during the performance of joint motor tasks is critical for developing rehabilitation robots that could aid therapists in providing effective treatments for motor problems. However, there is a lack of understanding of strategies (cooperative or competitive) adopted by humans when interacting with other individuals. Previous studies have investigated the cues (auditory, visual and haptic) that support these interactions but understanding how these unconscious interactions happen even without those cues is yet to be explained. To address this issue, in this study, a paradigm that tests the parallel efforts of pairs of individuals (dyads) to complete a jointly …

Contributors
Agrawal, Ankit, Buneo, Christopher, Santello, Marco, et al.
Created Date
2016

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine …

Contributors
Shi, Ying, Buneo, Christopher A, Helms Tillery, Stephen, et al.
Created Date
2011

Effective tactile sensing in prosthetic and robotic hands is crucial for improving the functionality of such hands and enhancing the user's experience. Thus, improving the range of tactile sensing capabilities is essential for developing versatile artificial hands. Multimodal tactile sensors called BioTacs, which include a hydrophone and a force electrode array, were used to understand how grip force, contact angle, object texture, and slip direction may be encoded in the sensor data. Findings show that slip induced under conditions of high contact angles and grip forces resulted in significant changes in both AC and DC pressure magnitude and rate of …

Contributors
Hsia, Albert, Santos, Veronica J, Santello, Marco, et al.
Created Date
2012

Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this control. In short, learning became a key component in controlling these systems. As a result, BMIs have become ideal tools to probe and explore brain activity, since they allow the isolation of neural inputs and systematic altering of the relationships between the neural signals and output. I have used BMIs …

Contributors
Armenta Salas, Michelle, Helms Tillery, Stephen I, Si, Jennie, et al.
Created Date
2015

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to …

Contributors
Yuan, Yuan, Si, Jennie, Buneo, Christopher, et al.
Created Date
2014

Understanding where our bodies are in space is imperative for motor control, particularly for actions such as goal-directed reaching. Multisensory integration is crucial for reducing uncertainty in arm position estimates. This dissertation examines time and frequency-domain correlates of visual-proprioceptive integration during an arm-position maintenance task. Neural recordings were obtained from two different cortical areas as non-human primates performed a center-out reaching task in a virtual reality environment. Following a reach, animals maintained the end-point position of their arm under unimodal (proprioception only) and bimodal (proprioception and vision) conditions. In both areas, time domain and multi-taper spectral analysis methods were used …

Contributors
Vangilder, Paul, Buneo, Christopher A, Helms-Tillery, Stephen, et al.
Created Date
2017

Myoelectric control is lled with potential to signicantly change human-robot interaction. Humans desire compliant robots to safely interact in dynamic environments associated with daily activities. As surface electromyography non-invasively measures limb motion intent and correlates with joint stiness during co-contractions, it has been identied as a candidate for naturally controlling such robots. However, state-of-the-art myoelectric interfaces have struggled to achieve both enhanced functionality and long-term reliability. As demands in myoelectric interfaces trend toward simultaneous and proportional control of compliant robots, robust processing of multi-muscle coordinations, or synergies, plays a larger role in the success of the control scheme. This dissertation …

Contributors
Ison, Mark, Artemiadis, Panagiotis, Santello, Marco, et al.
Created Date
2015

Millions of individuals suffer from gait impairments due to stroke or other neurological disorders. A primary goal of patients is to walk independently, but most patients only achieve a poor functional outcome five years after injury. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor function, state-of-the-art robotic interventions in gait therapy have not resulted in improved outcomes when compared to traditional treadmill-based therapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking is needed to inform robotic interventions in gait therapy. …

Contributors
Skidmore, Jeffrey, Artemiadis, Panagiotis, Santello, Marco, et al.
Created Date
2017

Existing theories suggest that evidence is accumulated before making a decision with competing goals. In motor tasks, reward and motor costs have been shown to influence the decision, but the interaction between these two variables has not been studied in depth. A novel reward-based sensorimotor decision-making task was developed to investigate how reward and motor costs interact to influence decisions. In human subjects, two targets of varying size and reward were presented. After a series of three tones, subjects initiated a movement as one of the targets disappeared. Reward was awarded when participants reached through the remaining target within a …

Contributors
Boege, Scott, Santello, Marco, Fine, Justin, et al.
Created Date
2019

Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense of digit position with motor commands responsible for generating digit forces and placement. However, the mechanisms underlying the phenomenon of digit position-force coordination are not well understood. This dissertation addresses this question through three experiments that are based on psychophysics and object lifting tasks. It was found in psychophysics tasks …

Contributors
Shibata, Daisuke, Santello, Marco, Dounskaia, Natalia, et al.
Created Date
2014

Stroke accounts for high rates of mortality and disability in the United States. It levies great economic burden on the affected subjects, their family and the society at large. Motor impairments after stroke mainly manifest themselves as hemiplegia or hemiparesis in the upper and lower limbs. Motor recovery is highly variable but can be enhanced through motor rehabilitation with sufficient movement repetition and intensity. Cost effective assistive devices that can augment therapy by increasing movement repetition both at home and in the clinic may facilitate recovery. This thesis aims to develop a Smart Glove that can enhance motor recovery by …

Contributors
Sasidharan, Smrithi, Kleim, Jeffrey A., Santello, Marco, et al.
Created Date
2015

Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, …

Contributors
Mcdaniel, Troy Lee, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2012

Recently, it was demonstrated that startle-evoked-movements (SEMs) are present during individuated finger movements (index finger abduction), but only following intense training. This demonstrates that changes in motor planning, which occur through training (motor learning - a characteristic which can provide researchers and clinicians with information about overall rehabilitative effectiveness), can be analyzed with SEM. The objective here was to determine if SEM is a sensitive enough tool for differentiating expertise (task solidification) in a common everyday task (typing). If proven to be true, SEM may then be useful during rehabilitation for time-stamping when task-specific expertise has occurred, and possibly even …

Contributors
Bartels, Brandon Michael, Honeycutt, Claire F, Schaefer, Sydney, et al.
Created Date
2018

Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis users and non-amputee control subjects. This lack of sensitivity limits the ability of clinicians to make informed clinical decisions and presents challenges with insurance reimbursement for comprehensive clinical care and advanced prosthetic devices. These issues have directly impacted clinical care by restricting device options, increasing financial burden on clinics, and …

Contributors
Howard, Charla Lindley, Abbas, James, Buneo, Christopher, et al.
Created Date
2017

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness and devices that are bulky, costly, and have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This research project presents a portable cost-effective soft robotic haptic device with …

Contributors
Sebastian, Frederick, Polygerinos, Panagiotis, Santello, Marco, et al.
Created Date
2018

Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space. However, relatively little is known about this internal representation of arm position. To this end, I developed a method to map proprioceptive estimates of hand location across a 2-d workspace. In this task, I moved each subject's hand to a target location while the subject's eyes were closed. After returning …

Contributors
Rincon Gonzalez, Liliana, Helms Tillery, Stephen I, Buneo, Christopher A, et al.
Created Date
2012

Locomotion in natural environments requires coordinated movements from multiple body parts, and precise adaptations when changes in the environment occur. The contributions of the neurons of the motor cortex underlying these behaviors are poorly understood, and especially little is known about how such contributions may differ based on the anatomical and physiological characteristics of neurons. To elucidate the contributions of motor cortical subpopulations to movements, the activity of motor cortical neurons, muscle activity, and kinematics were studied in the cat during a variety of locomotion tasks requiring accurate foot placement, including some tasks involving both expected and unexpected perturbations of …

Contributors
Stout, Eric, Beloozerova, Irina N, Dounskaia, Natalia, et al.
Created Date
2015

Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In this study, subjects lifted an L-shaped object with two fingers (2-DoF), and then lifted the object with three fingers (3-DoF). The subjects were divided into two groups--one group performed the task wearing a glove (to reduce tactile sensibility) upon the switch to 3-DoF (glove group), while the other group did …

Contributors
Gaw, Nathan Benjamin, Helms Tillery, Stephen, Santello, Marco, et al.
Created Date
2014

Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing …

Contributors
Klein, Joshua, Buneo, Christopher, Helms-Tillery, Stephen, et al.
Created Date
2018

Neural interfacing applications have advanced in complexity, with needs for increasingly high degrees of freedom in prosthetic device control, sharper discrimination in sensory percepts in bidirectional interfaces, and more precise localization of functional connectivity in the brain. As such, there is a growing need for reliable neurophysiological recordings at a fine spatial scale matching that of cortical columnar processing. Penetrating microelectrodes provide localization sufficient to isolate action potential (AP) waveforms, but often suffer from recorded signal deterioration linked to foreign body response. Micro-Electrocorticography (μECoG) surface electrodes elicit lower foreign body response and show greater chronic stability of recorded signals, though …

Contributors
Barton, Cody David, Greger, Bradley, Greger, Bradley, et al.
Created Date
2018

The interaction between visual fixations during planning and performance in a dexterous task was analyzed. An eye-tracking device was affixed to subjects during sequences of null (salient center of mass) and weighted (non salient center of mass) trials with unconstrained precision grasp. Subjects experienced both expected and unexpected perturbations, with the task of minimizing object roll. Unexpected perturbations were controlled by switching weights between trials, expected perturbations were controlled by asking subjects to rotate the object themselves. In all cases subjects were able to minimize the roll of the object within three trials. Eye fixations were correlated with object weight …

Contributors
Smith, Michael David, Santello, Marco, Buneo, Christopher, et al.
Created Date
2017

Approximately 1.7 million people in the United States are living with limb loss and are in need of more sophisticated devices that better mimic human function. In the Human Machine Integration Laboratory, a powered, transtibial prosthetic ankle was designed and build that allows a person to regain ankle function with improved ankle kinematics and kinetics. The ankle allows a person to walk normally and up and down stairs, but volitional control is still an issue. This research tackled the problem of giving the user more control over the prosthetic ankle using a force/torque circuit. When the user presses against a …

Contributors
Fronczyk, Adam Jerald, Sugar, Thomas G, Helms-Tillery, Stephen, et al.
Created Date
2012