Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and the number of safety-critical applications – application with unacceptable consequences of failure. Software-level error resilience schemes are attractive because they can provide commercial-off-the-shelf microprocessors with adaptive and scalable reliability. Among all software-level error resilience solutions, in-application instruction replication based approaches have been widely used and are deemed to be the most effective. However, existing instruction-based replication schemes only protect some part of computations i.e. arithmetic and logical instructions and leave …

Contributors
Didehban, Moslem, Shrivastava, Aviral, Wu, Carole-Jean, et al.
Created Date
2018