Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such interventions. In this thesis, an approach is proposed to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone, an opioid antagonist, as treatment for a chronic pain condition known as fibromyalgia. System identification techniques are employed to model the dynamics from the daily …

Deshpande, Sunil, Rivera, Daniel E., Si, Jennie, et al.
Created Date