Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage ...

Contributors
Krishnan, Kapil, Peralta, Pedro, Mignolet, Marc, et al.
Created Date
2013

Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to electrodeposition was enabled by solution chemistries that provide "bottom-up" or superfilling capability of vias and trenches. While the process has been and is used widely, the actual mechanisms responsible for superfilling remain relatively unknown. This dissertation presents and discusses the background and results of experimental investigations that have been done ...

Contributors
Heaton, Thomas Stanley, Friesen, Cody, Buttry, Daniel, et al.
Created Date
2011

Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical ...

Contributors
Gao, Tianxiang, He, Ximin, Sieradzki, Karl, et al.
Created Date
2015

Because of their favorable ionic and/or electronic conductivity, non-stoichiometric oxides are utilized for energy storage, energy conversion, sensing, catalysis, gas separation, and information technologies, both potential and commercialized. Charge transport in these materials is influenced strongly by grain boundaries, which exhibit fluctuations in composition, chemistry and atomic structure within Ångstroms or nanometers. Here, studies are presented that elucidate the interplay between macroscopic electrical conductivity, microscopic character, and local composition and electronic structure of grain boundaries in polycrystalline ceria-based (CeO2) solid solutions. AC impedance spectroscopy is employed to measure macroscopic electrical conductivity of grain boundaries, and electron energy-loss spectroscopy (EELS) in ...

Contributors
Bowman, William John, Crozier, Peter A., Chan, Candace K., et al.
Created Date
2016

Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in ...

Contributors
CHEN, XIYING, Sieradzki, Karl, Jiao, Yang, et al.
Created Date
2016

Dealloying induced stress corrosion cracking is particularly relevant in energy conversion systems (both nuclear and fossil fuel) as many failures in alloys such as austenitic stainless steel and nickel-based systems result directly from dealloying. This study provides evidence of the role of unstable dynamic fracture processes in dealloying induced stress-corrosion cracking of face-centered cubic alloys. Corrosion of such alloys often results in the formation of a brittle nanoporous layer which we hypothesize serves to nucleate a crack that owing to dynamic effects penetrates into the un-dealloyed parent phase alloy. Thus, since there is essentially a purely mechanical component of cracking, ...

Contributors
Sun, Shaofeng, Sieradzki, Karl, Jiang, Hanqing, et al.
Created Date
2012

The use of solar energy to produce power has increased substantially in the past few decades. In an attempt to provide uninterrupted solar power, production plants may find themselves having to operate the systems at temperatures higher than the operational capacity of the materials used in many of their components, which affects the microstructural and mechanical properties of those materials. Failures in components that have been exposed to these excessive temperatures have been observed during operations in the turbine used by AORA Solar Ltd. A particular component of interest was made of a material similar to the Ni-based superalloy Inconel ...

Contributors
Shenoy, Sneha, Peralta, Pedro, Solanki, Kiran, et al.
Created Date
2017

A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior of a wrought Al alloy (2024-T351) is studied using notched uniaxial samples with load axes along either the longitudinal or transverse direction, and center notched biaxial samples (cruciforms) with a uniaxial stress state of equivalent amplitude about the bore. Local composition and crystallography were quantified before testing using Energy Dispersive ...

Contributors
Makas, Admir, Peralta, Pedro D., Davidson, Joseph K., et al.
Created Date
2011

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2*-, which is then rapidly ...

Contributors
Zeller, Robert August, Friesen, Cody, Sieradzki, Karl, et al.
Created Date
2011

Structural stability and performance of structural materials is important for energy production, whether renewable or non renewable, to have uninterrupted energy supply, that is economically feasible and safe. High temperature metallic materials used in the turbines of AORA, an Israel-based clean energy producer, often experience high temperature, high stress and foreign object damage (FOD). In this study, efforts were made to study the effects of FOD on the fatigue life of these materials and to understand their failure mechanisms. The foreign objects/debris recovered by AORA were characterized using Powder X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) to identify composition ...

Contributors
Dobaria, Nirmal, Peralta, Pedro, Sieradzki, Karl, et al.
Created Date
2016