Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with ...

Contributors
Han, Zhun, Smith, Hal, Armbruster, Dieter, et al.
Created Date
2012

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva. A mathematical model is developed for the spread of rabies in a spatially distributed fox ...

Contributors
Alanazi, Khalaf Matar, Thieme, Horst R., Jackiewicz, Zdzislaw, et al.
Created Date
2018

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota in particular lends itself to ecological stoichiometry, which is a powerful framework for mathematical ecology. Three models are developed based on the cell quota principal in order to demonstrate its applications beyond chemostat culture. First, a data-driven model is derived for neutral lipid synthesis in green microalgae with respect to ...

Contributors
Packer, Aaron, Kuang, Yang, Nagy, John, et al.
Created Date
2014

Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations. The map which encapsulates the population development from one year to the next is approximated at the origin (the extinction state) by a linear or homogeneous map. The (cone) spectral radius of this approximating map is the threshold between extinction and persistence. General persistence results are applied to three particular ...

Contributors
Jin, Wen, Thieme, Horst, Milner, Fabio, et al.
Created Date
2014