Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected modules have been claimed to be fully recovered by high temperature and reverse potential treatments. However, the results obtained in this work indicate that the near-full recovery of efficiency can be achieved only at high irradiance conditions, but the full recovery of efficiency at low irradiance levels, of shunt resistance, …

Contributors
Oh, Jaewon, Bowden, Stuart, Tamizhmani, Govindasamy, et al.
Created Date
2016