Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a …

Contributors
Belmont, Jonathan Mark, Tamizhmani, Govindasamy, Henderson, Mark, et al.
Created Date
2013

Encapsulant is a key packaging component of photovoltaic (PV) modules, which protects the solar cell from physical, environmental and electrical damages. Ethylene-vinyl acetate (EVA) is one of the major encapsulant materials used in the PV industry. This work focuses on indoor accelerated ultraviolet (UV) stress testing and characterization to investigate the EVA discoloration and delamination in PV modules by using various non-destructive characterization techniques, including current-voltage (IV) measurements, UV fluorescence (UVf) and colorimetry measurements. Mini-modules with glass/EVA/cell/EVA/backsheet construction were fabricated in the laboratory with two types of EVA, UV-cut EVA (UVC) and UV-pass EVA (UVP). The accelerated UV testing was …

Contributors
Dolia, Kshitiz, Tamizhmani, Govindasamy, Green, Matthew, et al.
Created Date
2018

Building applied photovoltaics (BAPV) is a major application sector for photovoltaics (PV). Due to the negative temperature coefficient of power output, the performance of a PV module decreases as the temperature of the module increases. In hot climatic conditions, such as the summer in Arizona, the operating temperature of a BAPV module can reach as high as 90°C. Considering a typical 0.5%/°C power drop for crystalline silicon (c-Si) modules, a performance decrease of approximately 30% would be expected during peak summer temperatures due to the difference between rated temperature (25°C) and operating temperature (~90°C) of the modules. Also, in a …

Contributors
Oh, Jaewon, Tamizhmani, Govindasamy, Rogers, Bradley R, et al.
Created Date
2010

Performance of photovoltaic (PV) modules decrease as the operating temperatures increase. In hot climatic conditions, the operating temperature can reach as high as 85°C for the rooftop modules. Considering a typical power drop of 0.5%/°C for crystalline silicon modules, a performance decrease of approximately 30% could be expected during peak summer seasons due to the difference between module rated temperature of 25°C and operating temperature of 85°C. Therefore, it is critical to accurately predict the temperature of the modules so the performance can be accurately predicted. The module operating temperature is based not only on the ambient and irradiance conditions …

Contributors
Natarajan Rammohan, Balamurali, Tamizhmani, Govindasamy, Srinivasan, Devarajan, et al.
Created Date
2017

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss …

Contributors
Chicca, Matthew, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2015

The deposition of airborne dust, especially in desert conditions, is very problematic as it leads to significant loss of power of photovoltaic (PV) modules on a daily basis during the dry period. As such, PV testing laboratories around the world have been trying to set up soil deposition stations to artificially deposit soil layers and to simulate outdoor soiling conditions in an accelerated manner. This thesis is a part of a twin thesis. The first thesis, authored by Shanmukha Mantha, is associated with the designing of an artificial soiling station. The second thesis (this thesis), authored by Darshan Choudhary, is …

Contributors
Choudhary, Darshan, Tamizhmani, Govindasamy, Rogers, Bradley Barney, et al.
Created Date
2016

As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the second part of the thesis deals with the statistical degradation rate analysis. In the first part, a detailed analysis on the performance or financial risk related to each defect found in multiple PV power plants across various climatic regions of the USA is presented by assigning a risk priority number …

Contributors
Sundarajan, Prasanna, Tamizhmani, Govindasamy, Rogers, Bradley, et al.
Created Date
2016

The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV modules fielded in New York (cold climate) over 18 years have been analyzed. All the ten modules were manufactured by the same manufacturer with glass/EVA/cell/EVA/back sheet construction. The activation energy for the encapsulant browning is calculated using the degradation rates of short-circuit current (Isc, the response parameter), weather data (temperature, …

Contributors
Veerendra Kumar, Deepak Jain, Tamizhmani, Govindasamy, Tamizhmani, Govindasamy, et al.
Created Date
2016

Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second …

Contributors
Cano, Jose, Tamizhmani, Govindasamy, Madakannan, Arunachalanadar, et al.
Created Date
2011

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the …

Contributors
Tatapudi, Sai Ravi Vasista, Tamizhmani, Govindasamy, Srinivasan, Devarajan, et al.
Created Date
2012