Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require the robots to allocate themselves around the boundaries of regions or features of interest and achieve target objectives that derive from their resulting spatial configurations, such as forming a connected communication network or acquiring sensor data around the entire boundary. We refer to this spatial allocation problem as boundary coverage. Possible swarm tasks that will involve boundary coverage include cooperative load ...

Contributors
Peruvemba Kumar, Ganesh, Berman, Spring M, Fainekos, Georgios, et al.
Created Date
2016

The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such ...

Contributors
Anirudh, Rushil, Turaga, Pavan, Cochran, Douglas, et al.
Created Date
2016