Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2017


Fully distributed wireless sensor networks (WSNs) without fusion center have advantages such as scalability in network size and energy efficiency in communications. Each sensor shares its data only with neighbors and then achieves global consensus quantities by in-network processing. This dissertation considers robust distributed parameter estimation methods, seeking global consensus on parameters of adaptive learning algorithms and statistical quantities. Diffusion adaptation strategy with nonlinear transmission is proposed. The nonlinearity was motivated by the necessity for bounded transmit power, as sensors need to iteratively communicate each other energy-efficiently. Despite the nonlinearity, it is shown that the algorithm performs close to the …

Contributors
Lee, Jongmin, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2017

Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies …

Contributors
Thyagaturu, Akhilesh Thyagaturu, Reisslein, Martin, Seeling, Patrick, et al.
Created Date
2017

Access Networks provide the backbone to the Internet connecting the end-users to the core network thus forming the most important segment for connectivity. Access Networks have multiple physical layer medium ranging from fiber cables, to DSL links and Wireless nodes, creating practically-used hybrid access networks. We explore the hybrid access network at the Medium ACcess (MAC) Layer which receives packets segregated as data and control packets, thus providing the needed decoupling of data and control plane. We utilize the Software Defined Networking (SDN) principle of centralized processing with segregated data and control plane to further extend the usability of our …

Contributors
Mercian, Anu, Reisslein, Martin, McGarry, Michael P, et al.
Created Date
2015

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, …

Contributors
Sharifi, Shahrouz, Duman, Tolga M, Zhang, Junshan, et al.
Created Date
2015

LTE-Advanced networks employ random access based on preambles transmitted according to multi-channel slotted Aloha principles. The random access is controlled through a limit <italic>W</italic> on the number of transmission attempts and a timeout period for uniform backoff after a collision. We model the LTE-Advanced random access system by formulating the equilibrium condition for the ratio of the number of requests successful within the permitted number of transmission attempts to those successful in one attempt. We prove that for <italic>W</italic>&le;8 there is only one equilibrium operating point and for <italic>W</italic>&ge;9 there are three operating points if the request load &rho; is …

Contributors
Tyagi, Revak Raj, Reisslein, Martin, Tepedelenlioglu, Cihan, et al.
Created Date
2014

Recently, the location of the nodes in wireless networks has been modeled as point processes. In this dissertation, various scenarios of wireless communications in large-scale networks modeled as point processes are considered. The first part of the dissertation considers signal reception and detection problems with symmetric alpha stable noise which is from an interfering network modeled as a Poisson point process. For the signal reception problem, the performance of space-time coding (STC) over fading channels with alpha stable noise is studied. We derive pairwise error probability (PEP) of orthogonal STCs. For general STCs, we propose a maximum-likelihood (ML) receiver, and …

Contributors
Lee, Junghoon, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2014

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system …

Contributors
Dasarathan, Sivaraman, Tepedelenlioglu, Cihan, Papandreou-Suppappola, Antonia, et al.
Created Date
2013

Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and …

Contributors
Rahmati, Mojtaba, Duman, Tolga M, Zhang, Junshan, et al.
Created Date
2013

Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity reveals the existence of constant capacity difference gaps among the schemes with a pre-log constant of 1. Closed-form expressions for these high-SNR capacity difference gaps are derived, which are proportional to the SNR loss between these schemes in dB scale. The largest one of these gaps is found to be …

Contributors
Zhang, Yuan, Tepedelenlioglu, Cihan, Zhang, Junshan, et al.
Created Date
2013

Wireless technologies for health monitoring systems have seen considerable interest in recent years owing to it's potential to achieve vision of pervasive healthcare, that is healthcare to anyone, anywhere and anytime. Development of wearable wireless medical devices which have the capability to sense, compute, and send physiological information to a mobile gateway, forming a Body Sensor Network (BSN) is considered as a step towards achieving the vision of pervasive health monitoring systems (PHMS). PHMS consisting of wearable body sensors encourages unsupervised long-term monitoring, reducing frequent visit to hospital and nursing cost. Therefore, it is of utmost importance that operation of …

Contributors
Verma, Sunit, Gupta, Sandeep, Tepedelenlioglu, Cihan, et al.
Created Date
2013