Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it …

Contributors
Jayaraman Thiagarajan, Jayaraman, Spanias, Andreas, Frakes, David, et al.
Created Date
2013

Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity reveals the existence of constant capacity difference gaps among the schemes with a pre-log constant of 1. Closed-form expressions for these high-SNR capacity difference gaps are derived, which are proportional to the SNR loss between these schemes in dB scale. The largest one of these gaps is found to be …

Contributors
Zhang, Yuan, Tepedelenlioglu, Cihan, Zhang, Junshan, et al.
Created Date
2013

Wireless technologies for health monitoring systems have seen considerable interest in recent years owing to it's potential to achieve vision of pervasive healthcare, that is healthcare to anyone, anywhere and anytime. Development of wearable wireless medical devices which have the capability to sense, compute, and send physiological information to a mobile gateway, forming a Body Sensor Network (BSN) is considered as a step towards achieving the vision of pervasive health monitoring systems (PHMS). PHMS consisting of wearable body sensors encourages unsupervised long-term monitoring, reducing frequent visit to hospital and nursing cost. Therefore, it is of utmost importance that operation of …

Contributors
Verma, Sunit, Gupta, Sandeep, Tepedelenlioglu, Cihan, et al.
Created Date
2013

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels are estimated using adaptive learning methods, and multiple UWA communications users are detected by designing the transmit signal to match the environment. For the urban environment, a multi-target tracking algorithm is proposed that integrates multipath-to-measurement association and the probability hypothesis density method implemented using particle filtering. The algorithm is designed to track an unknown time-varying number of targets by extracting …

Contributors
Zhou, Meng, Papandreou-Suppappola, Antonia, Tepedelenlioglu, Cihan, et al.
Created Date
2014

Fisheye cameras are special cameras that have a much larger field of view compared to conventional cameras. The large field of view comes at a price of non-linear distortions introduced near the boundaries of the images captured by such cameras. Despite this drawback, they are being used increasingly in many applications of computer vision, robotics, reconnaissance, astrophotography, surveillance and automotive applications. The images captured from such cameras can be corrected for their distortion if the cameras are calibrated and the distortion function is determined. Calibration also allows fisheye cameras to be used in tasks involving metric scene measurement, metric scene …

Contributors
Kashyap Takmul Purushothama Raju, Vinay, Karam, Lina, Turaga, Pavan, et al.
Created Date
2014

Thousands of high-resolution images are generated each day. Detecting and analyzing variations in these images are key steps in image understanding. This work focuses on spatial and multitemporal visual change detection and its applications in multi-temporal synthetic aperture radar (SAR) images. The Canny edge detector is one of the most widely-used edge detection algorithms due to its superior performance in terms of SNR and edge localization and only one response to a single edge. In this work, we propose a mechanism to implement the Canny algorithm at the block level without any loss in edge detection performance as compared to …

Contributors
Xu, Qian, Karam, Lina J, Chakrabarti, Chaitali, et al.
Created Date
2014

Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used to identify antigen antibody binding patterns or immunosignatures. In this thesis, an advanced signal processing method is proposed to estimate epitope antigen subsequences as well as identify mimotope antigen subsequences that mimic the structure of epitopes from random-sequence peptide microarrays. The method first maps peptide sequences to linear expansions of highly-localized one-dimensional (1-D) time-varying signals and uses a time-frequency processing technique to detect recurring patterns in subsequences. This technique is matched …

Contributors
O'Donnell, Brian Nickerson, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2014

LTE-Advanced networks employ random access based on preambles transmitted according to multi-channel slotted Aloha principles. The random access is controlled through a limit <italic>W</italic> on the number of transmission attempts and a timeout period for uniform backoff after a collision. We model the LTE-Advanced random access system by formulating the equilibrium condition for the ratio of the number of requests successful within the permitted number of transmission attempts to those successful in one attempt. We prove that for <italic>W</italic>&le;8 there is only one equilibrium operating point and for <italic>W</italic>&ge;9 there are three operating points if the request load &rho; is …

Contributors
Tyagi, Revak Raj, Reisslein, Martin, Tepedelenlioglu, Cihan, et al.
Created Date
2014

Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms of perceived regularity. Our human visual system (HVS) uses the perceived regularity as one of the important pre-attentive cues in low-level image understanding. Similar to the HVS, image processing and computer vision systems can make fast and efficient decisions if they can quantify this regularity automatically. In this work, the …

Contributors
Varadarajan, Srenivas, Karam, Lina J, Chakrabarti, Chaitali, et al.
Created Date
2014

Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous frequencies (IFs) with cubic FM functions whose coefficients are constrained to the surface of the three dimensional unit sphere. Cubic IF functions subsume well-known IF functions such as linear, quadratic monomial, and cubic monomial IF functions. In addition, all nonlinear IF functions sufficiently approximated by a third order Taylor series over the unit time sequence can be represented in this …

Contributors
Paul, Bryan, Papandreou-Suppappola, Antonia, Bliss, Daniel W, et al.
Created Date
2014