Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, …

Contributors
Song, Huan, Spanias, Andreas, Thiagarajan, Jayaraman, et al.
Created Date
2018

The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and to develop corresponding detection, prediction, and control strategies. In this highly interdisciplinary field, my research mainly concentrates on universal estimation schemes, physical controllability, as well as mechanisms behind extreme events and cascading failure for complex networked systems. Revealing the underlying structure and dynamics of complex networked systems from observed data …

Contributors
Chen, Yuzhong Chen, Lai, Ying-Cheng, Spanias, Andreas, et al.
Created Date
2016

Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues, which might hinder the practical deployment. This dissertation consists of two parts to discuss the potential challenges and solutions. The first part consists of three chapters, with a focus on secondary-user authentication. Chapter One gives an overview of the challenges and existing solutions in spectrum-misuse detection. Chapter Two presents SpecGuard, …

Contributors
Jin, Xiaocong, Zhang, Yanchao, Zhang, Junshan, et al.
Created Date
2017

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it …

Contributors
Jayaraman Thiagarajan, Jayaraman, Spanias, Andreas, Frakes, David, et al.
Created Date
2013