Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2017


Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect wireless service to emulate wired service with little to virtually no difference in quality of service (QoS). The background section of this document examines the QoS requirements for wireless connectivity of high definition video applications. I then proceed to look at proposed solutions at the physical (PHY) and the media …

Contributors
Bosco, Bruce, Reisslein, Martin, Tepedelenlioglu, Cihan, et al.
Created Date
2011

Distributed wireless sensor networks (WSNs) have attracted researchers recently due to their advantages such as low power consumption, scalability and robustness to link failures. In sensor networks with no fusion center, consensus is a process where all the sensors in the network achieve global agreement using only local transmissions. In this dissertation, several consensus and consensus-based algorithms in WSNs are studied. Firstly, a distributed consensus algorithm for estimating the maximum and minimum value of the initial measurements in a sensor network in the presence of communication noise is proposed. In the proposed algorithm, a soft-max approximation together with a non-linear …

Contributors
Zhang, Sai, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2017

Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as gain standards for calibration and gain measurement of other antennas. The gain and loss factor of conical horns are revisited in this dissertation based on spherical and quadratic aperture phase distributions. The gain is compared with published classical data in an attempt to confirm their validity and accuracy and to …

Contributors
Aboserwal, Nafati, Balanis, Constantine A, Aberle, James T, et al.
Created Date
2014

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) …

Contributors
Krishnamoorthi, Harish, Spanias, Andreas, Papandreou-Suppappola, Antonia, et al.
Created Date
2011

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. …

Contributors
Miller, Steven R., Spanias, Andreas, Tepedelenlioglu, Cihan, et al.
Created Date
2013

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels are estimated using adaptive learning methods, and multiple UWA communications users are detected by designing the transmit signal to match the environment. For the urban environment, a multi-target tracking algorithm is proposed that integrates multipath-to-measurement association and the probability hypothesis density method implemented using particle filtering. The algorithm is designed to track an unknown time-varying number of targets by extracting …

Contributors
Zhou, Meng, Papandreou-Suppappola, Antonia, Tepedelenlioglu, Cihan, et al.
Created Date
2014

Fully distributed wireless sensor networks (WSNs) without fusion center have advantages such as scalability in network size and energy efficiency in communications. Each sensor shares its data only with neighbors and then achieves global consensus quantities by in-network processing. This dissertation considers robust distributed parameter estimation methods, seeking global consensus on parameters of adaptive learning algorithms and statistical quantities. Diffusion adaptation strategy with nonlinear transmission is proposed. The nonlinearity was motivated by the necessity for bounded transmit power, as sensors need to iteratively communicate each other energy-efficiently. Despite the nonlinearity, it is shown that the algorithm performs close to the …

Contributors
Lee, Jongmin, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2017

Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides real-time measurements of each PV module's voltage and current is considered. A fault detection algorithm formulated as a clustering problem and addressed using the robust minimum covariance determinant (MCD) estimator is described; its performance on simulated instances of arc and ground faults is evaluated. The algorithm is found to perform …

Contributors
Braun, Henry Carlton, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2012

Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry, physics, computer science and electrical engineering. In particular, signal processing techniques were applied to the problems of sequence querying and alignment, that compare and classify regions of similarity in the sequences based on their composition. However, although current approaches obtain results that can be attributed to key biological properties, they …

Contributors
Ravichandran, Lakshminarayan, Papandreou-Suppappola, Antonia, Spanias, Andreas S, et al.
Created Date
2011