Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2012 2018


This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic …

Contributors
Dickeson, Jeffrey James, Rodriguez, Armando A, Tsakalis, Konstantinos, et al.
Created Date
2012

Development of post-traumatic epilepsy (PTE) after traumatic brain injury (TBI) is a major health concern (5% - 50% of TBI cases). A significant problem in TBI management is the inability to predict which patients will develop PTE. Such prediction, followed by timely treatment, could be highly beneficial to TBI patients. Six male Sprague-Dawley rats were subjected to a controlled cortical impact (CCI). A 6mm piston was pneumatically driven 3mm into the right parietal cortex with velocity of 5.5m/s. The rats were subsequently implanted with 6 intracranial electroencephalographic (EEG) electrodes. Long-term (14-week) continuous EEG recordings were conducted. Using linear (coherence) and …

Contributors
Tobin, Edward, Iasemidis, Leonidas, Tsakalis, Konstantinos, et al.
Created Date
2012

Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses on the study of sparse models and their interplay with modern machine learning techniques such as manifold, ensemble and graph-based methods, along with their applications in image analysis and recovery. By considering graph relations between data samples while learning sparse models, graph-embedded codes can be obtained for use in unsupervised, …

Contributors
Natesan Ramamurthy, Karthikeyan, Spanias, Andreas, Tsakalis, Konstantinos, et al.
Created Date
2013

Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating objects. In this work, methods of sound synthesis by re-sonification are considered. Re-sonification, herein, refers to the general process of analyzing, possibly transforming, and resynthesizing or reusing recorded sounds in meaningful ways, to convey information. Applied to soundscapes, re-sonification is presented as a means of conveying activity within an environment. …

Contributors
Fink, Alex Michael, Spanias, Andreas S, Cook, Perry R, et al.
Created Date
2013

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and …

Contributors
Ranganath, Suhas, Spanias, Andreas, Tepedelenlioglu, Cihan, et al.
Created Date
2013

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is …

Contributors
Steenis, Joel, Ayyanar, Raja, Mittelmann, Hans, et al.
Created Date
2013

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. …

Contributors
Miller, Steven R., Spanias, Andreas, Tepedelenlioglu, Cihan, et al.
Created Date
2013

Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and control-relevant design issues for differential drive mobile robots is addressed. Two major themes that have been explored are the use of kinematic models for control design and the use of decentralized proportional plus integral (PI) control. While these topics have received much attention, there still remain critical questions which have not been rigorously addressed. In this thesis, answers to the …

Contributors
Anvari, Iman, Rodriguez, Armando A, Si, Jenni, et al.
Created Date
2013

This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to go from one particular co-ordinate to another. Cruise control, cartesian and posture stabilization problems are discussed as the part of this behavior. Control strategies used for the above three problems are explained in the thesis. Matlab simulations are presented to verify these controllers. Obstacle avoidance behavior ensures that the vehicle …

Contributors
Chopra, Dhruv, Rodriguez, Armando A, Tsakalis, Konstantinos, et al.
Created Date
2013

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following …

Contributors
Anand, Sindhu, Muthuswamy, Jitendran, Tillery, Stephen H, et al.
Created Date
2013

Vector Fitting (VF) is a recent macromodeling method that has been popularized by its use in many commercial software for extracting equivalent circuit's of simulated networks. Specifically for material measurement applications, VF is shown to estimate either the permittivity or permeability of a multi-Debye material accurately, even when measured in the presence of noise and interferences caused by test setup imperfections. A brief history and survey of methods utilizing VF for material measurement will be introduced in this work. It is shown how VF is useful for macromodeling dielectric materials after being measured with standard transmission line and free-space methods. …

Contributors
Richards, Evan, Diaz, Rodolfo E, Tsakalis, Konstantinos, et al.
Created Date
2013

A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling technology for this particular circuit to attain good efficiency. Traditionally, grid connected PV inverters required a transformer for isolation and safety. The disadvantage of high frequency transformer based inverters is complexity and cost. Transformerless inverters have become more popular recently, although they can be challenging to implement because of possible …

Contributors
Breazeale, Lloyd Caleb, Ayyanar, Raja, Karady, George, et al.
Created Date
2014

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations. Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse …

Contributors
Sattigeri, Prasanna, Spanias, Andreas, Thornton, Trevor, et al.
Created Date
2014

Gas turbine engine for aircraft propulsion represents one of the most physics-complex and safety-critical systems in the world. Its failure diagnostic is challenging due to the complexity of the model system, difficulty involved in practical testing and the infeasibility of creating homogeneous diagnostic performance evaluation criteria for the diverse engine makes. NASA has designed and publicized a standard benchmark problem for propulsion engine gas path diagnostic that enables comparisons among different engine diagnostic approaches. Some traditional model-based approaches and novel purely data-driven approaches such as machine learning, have been applied to this problem. This study focuses on a different machine …

Contributors
Wu, Qiyu, Si, Jennie, Wu, Teresa, et al.
Created Date
2015

In this dissertation, two problems are addressed in the verification and control of Cyber-Physical Systems (CPS): 1) Falsification: given a CPS, and a property of interest that the CPS must satisfy under all allowed operating conditions, does the CPS violate, i.e. falsify, the property? 2) Conformance testing: given a model of a CPS, and an implementation of that CPS on an embedded platform, how can we characterize the properties satisfied by the implementation, given the properties satisfied by the model? Both problems arise in the context of Model-Based Design (MBD) of CPS: in MBD, the designers start from a set …

Contributors
Abbas, Houssam, Fainekos, Georgios, Duman, Tolga, et al.
Created Date
2015

This thesis addresses the design and control of three phase inverters. Such inverters are used to produce three-phase sinusoidal voltages and currents from a DC source. They are critical for injecting power from renewable energy sources into the grid. This is especially true since many of these sources of energy are DC sources (e.g. solar photovoltaic) or need to be stored in DC batteries because they are intermittent (e.g. wind and solar). Two classes of inverters are examined in this thesis. A control-centric design procedure is presented for each class. The first class of inverters is simple in that they …

Contributors
Sarkar, Aratrik, Rodriguez, Armando A., Si, Jennie, et al.
Created Date
2015

Vertical taking off and landing (VTOL) drones started to emerge at the beginning of this century, and finds applications in the vast areas of mapping, rescuing, logistics, etc. Usually a VTOL drone control system design starts from a first principles model. Most of the VTOL drones are in the shape of a quad-rotor which is convenient for dynamic analysis. In this project, a VTOL drone with shape similar to a Convair XFY-1 is studied and the primary focus is developing and examining an alternative method to identify a system model from the input and output data, with which it is …

Contributors
Liu, Yiqiu, Tsakalis, Konstantinos, Rodriguez, Armando, et al.
Created Date
2015

In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and location detection problems are considered. In location estimation problems, sensor nodes at known locations, called anchors, transmit signals to sensor nodes at unknown locations, called nodes, and use these transmissions to estimate the location of the nodes. Specifically, the location estimation in the presence of fading channels using time of arrival (TOA) measurements with narrowband communication signals is considered. Meanwhile, the Cramer-Rao lower bound (CRLB) for localization error under different …

Contributors
Zhang, Xue, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2016

Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to track and diagnose their parameters. The system identification process should be performed on-line to not affect the normal operation of the device. Identifying the parameters of the system is essential to design and tune an adaptive proportional-integral-derivative (PID) controller. Three techniques were used to design the PID controller. Phase and gain margin still prevails as one of the easiest methods …

Contributors
Serrano Rodriguez, Victoria Melissa, Tsakalis, Konstantinos, Bakkaloglu, Bertan, et al.
Created Date
2016

For a sensor array, part of its elements may fail to work due to hardware failures. Then the missing data may distort in the beam pattern or decrease the accuracy of direction-of-arrival (DOA) estimation. Therefore, considerable research has been conducted to develop algorithms that can estimate the missing signal information. On the other hand, through those algorithms, array elements can also be selectively turned off while the missed information can be successfully recovered, which will save power consumption and hardware cost. Conventional approaches focusing on array element failures are mainly based on interpolation or sequential learning algorithm. Both of them …

Contributors
Fan, Jie, Spanias, Andreas, Tepedelenlioglu, Cihan, et al.
Created Date
2016