Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Marine pico-cyanobacteria of the genera Synechococcus and Prochlorococcus carry out nearly two thirds of the primary production in oligotrophic oceans. These cyanobacteria are also considered an important constituent of the biological carbon pump, the photosynthetic fixation of CO2 to dissolved and particulate organic carbon and subsequent export to the ocean’s interior. But single cells of these cyanobacteria are too small to sink, so their carbon export has to be mediated by aggregate formation and/or consumption by zooplankton that produce sinking fecal pellets. In this dissertation, I investigated for the first time the aggregation of these cyanobacteria by studying the marine …

Contributors
Deng, Wei, Neuer, Susanne, Anbar, Ariel, et al.
Created Date
2016

The basic scheme for photosynthesis suggests the two photosystems existing in parity with one another. However, cyanobacteria typically maintain significantly more photosystem I (PSI) than photosystem II (PSII) complexes. I set out to evaluate this disparity through development and analysis of multiple mutants of the genetically tractable cyanobacterium Synechocystis sp. PCC 6803 that exhibit a range of expression levels of the main proteins present in PSI (Chapter 2). One hypothesis was that the higher abundance of PSI in this organism is used to enable more cyclic electron flow (CEF) around PSI to contribute to greater ATP synthesis. Results of this …

Contributors
Moore, Vicki, Vermaas, Willem, Wang, Xuan, et al.
Created Date
2017

Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and …

Contributors
Sheng, Jie, Rittmann, Bruce E, Westerhoff, Paul, et al.
Created Date
2011

ABSTRACT Sustainable global energy production is one of the grand challenges of the 21st century. Next-generation renewable energy sources include using photosynthetic microbes such as cyanobacteria for efficient production of sustainable fuels from sunlight. The cyanobacterium Synechocystis PCC 6803 (Synechocystis) is a genetically tractable model organism for plant-like photosynthesis that is used to develop microbial biofuel technologies. However, outside of photosynthetic processes, relatively little is known about the biology of microbial phototrophs such as Synechocystis, which impairs their development into market-ready technologies. My research objective was to characterize strategic aspects of Synechocystis biology related to its use in biofuel production; …

Contributors
Allen, Rebecca Custer, Curtiss III, Roy, Krajmalnik-Brown, Rosa, et al.
Created Date
2016

Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large–scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the …

Contributors
Gonzalez Esquer, Cesar Raul, Vermaas, Willem, Chandler, Douglas, et al.
Created Date
2013

Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB such as Geobacter and Shewanella, tremendous potential exists for MXCs as microbiological platforms for exploring novel ARB. This dissertation introduces approaches for selective enrichment and characterization of phototrophic, halophilic, and alkaliphilic ARB. An enrichment scheme based on manipulation of poised anode potential, light, and nutrient availability led to current generation …

Contributors
Badalamenti, Jonathan Paul, Krajmalnik-Brown, Rosa, Garcia-Pichel, Ferran, et al.
Created Date
2013