Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind …

Contributors
He, Miao, Zhang, Junshan, Vittal, Vijay, et al.
Created Date
2013

All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables' outer sheath. A method is presented here to rate the cable sheath using the power developed during dry band arcing. Because of the small diameter of ADSS cables, mechanical vibration is induced in ADSS cable. In order to avoid damage, vibration dampers known as spiral vibration dampers (SVD) are used …

Contributors
Prabakar, Kumaraguru, Karady, George G, Vittal, Vijay, et al.
Created Date
2011

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A methodology is presented to estimate the outage probability of wind generators while incorporating their reduced power output levels at low wind speeds. Subsequently, power system reliability is assessed by calculating the loss of load probability (LOLP) and the effect of wind integration on the overall system is analyzed. Actual generation …

Contributors
Sinha, Anubhav, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will help in performing a detailed analysis in estimating the probability density function and statistics associated with the payback period. This thesis also identifies several parameters associated with the FREEDM system, which are used in the cost benefit study to evaluate the investment and several direct and indirect benefits. Different topologies …

Contributors
Dinakar, Abhishek, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2016

The reliable operation of critical infrastructure systems is of significant importance to society. The power grid and the water distribution system are two critical infrastructure systems, each of which is facilitated by a cyber-based supervisory control and data acquisition (SCADA) system. Although critical infrastructure systems are interdependent with each other due to coupling (a power grid may be the electrical supply for a water distribution system), the corresponding SCADA systems operated independently and did not share information with each other. Modern critical infrastructure systems tend to cover a larger geographic area, indicating that a SCADA control station supervising a small …

Contributors
Liu, Beibei, Zhang, Junshan, Kwan, Sau, et al.
Created Date
2018

This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way. Regarding compact phase spacing, insight into the possibility of increasing the security rating of transmission lines is the primary focus through increased mutual coupling and decreased positive sequence reactance. Compact design can reduce the required corridor width to as little as 31% of traditional designs, especially with the use of inter-phase …

Contributors
Pierre, Brian J., Heydt, Gerald, Karady, George, et al.
Created Date
2015

In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work has been done on the applications of PMU measurements based on the as-sumption that a high level of accuracy is obtained in the field. The study in this dissertation is conducted to address the basic issue concerning the accuracy of actual PMU measurements in the field. Synchronization is one of …

Contributors
Zhang, Qing, Heydt, Gerald, Vittal, Vijay, et al.
Created Date
2012

After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role of protective devices in cascading events, thereby confirming the necessity to represent protective functions in transient stability studies. This dissertation is aimed at studying the importance of representing protective relays in power system dynamic studies. Although modeling all of the protective relays within transient stability studies may result in a …

Contributors
Hedman, Mojdeh Khorsand, Vittal, Vijay, Ayyanar, Raja, et al.
Created Date
2017

Understanding the graphical structure of the electric power system is important in assessing reliability, robustness, and the risk of failure of operations of this criti- cal infrastructure network. Statistical graph models of complex networks yield much insight into the underlying processes that are supported by the network. Such gen- erative graph models are also capable of generating synthetic graphs representative of the real network. This is particularly important since the smaller number of tradi- tionally available test systems, such as the IEEE systems, have been largely deemed to be insucient for supporting large-scale simulation studies and commercial-grade algorithm development. Thus, …

Contributors
HU, JIALE, Sankar, Lalitha, Vittal, Vijay, et al.
Created Date
2015

A distributed-parameter model is developed for a pressurized water reactor (PWR) in order to analyze the frequency behavior of the nuclear reactor. The model is built based upon the partial differential equations describing heat transfer and fluid flow in the reactor core. As a comparison, a multi-lump reactor core model with five fuel lumps and ten coolant lumps using Mann's model is employed. The derivations of the different transfer functions in both models are also presented with emphasis on the distributed parameter. In order to contrast the two models, Bode plots of the transfer functions are generated using data from …

Contributors
Zhang, Taipeng, Holbert, Keith, Vittal, Vijay, et al.
Created Date
2012

This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or loop), a 1 MW green energy hub. The FREEDM loop merges advanced power electronics technology with information tech-nology to form an efficient power grid that can be integrated with the existing power system. With the addition of loads to the FREEDM system, the level of fault current rises because of …

Contributors
Thirumalai, Arvind, Karady, George, Vittal, Vijay, et al.
Created Date
2011

Insulation aging monitoring is widely used to evaluate the operating condition of power equipment. One important monitoring method is detecting partial discharges (PD). PD is a localized breakdown of dielectric and its characteristics can give information about the insulation aging. Most existing test methods cannot identify different kinds of defects. Also, the practical application of PD detection in most existing test methods is restricted by weak PD signals and strong electric field disturbance from surroundings. In order to monitor aging situation in detail, types of PDs are important features to take into account. To classify different types of PDs, pulse …

Contributors
Cui, Longfei, Gorur, Ravi, Vittal, Vijay, et al.
Created Date
2013

The development of new policies favoring integration of renewable energy into the grid has created a need to relook at our existing infrastructure resources and at the way the power system is currently operated. Also, the needs of electric energy markets and transmission/generation expansion planning has created a niche for development of new computationally efficient and yet reliable, simple and robust power flow tools for such studies. The so called dc power flow algorithm is an important power flow tool currently in use. However, the accuracy and performance of dc power flow results is highly variable due to the various …

Contributors
Sood, Puneet, Tylavsky, Daniel J, Vittal, Vijay, et al.
Created Date
2014

This thesis concerns the impact of energy storage on the power system. The rapidly increasing integration of renewable energy source into the grid is driving greater attention towards electrical energy storage systems which can serve many applications like economically meeting peak loads, providing spinning reserve. Economic dispatch is performed with bulk energy storage with wind energy penetration in power systems allocating the generation levels to the units in the mix, so that the system load is served and most economically. The results obtained in previous research to solve for economic dispatch uses a linear cost function for a Direct Current …

Contributors
Gupta, Samir, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on …

Contributors
Mitra, Parag, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2013

Present distribution infrastructure is designed mainly for uni-directional power flow with well-controlled generation. An increase in the inverter-interfaced photovoltaic (PV) systems requires a thorough re-examination of the design, operation, protection and control of distribution systems. In order to understand the impact of high penetration of PV generation, this work conducts an automated and detailed modeling of a power distribution system. The simulation results of the modeled distribution feeder have been verified with the field measurements. Based on the feeder model, this work studies the impact of the PV systems on voltage profiles under various scenarios, including reallocation of the PV …

Contributors
Tang, Yingying, Ayyanar, Raja, Karady, George, et al.
Created Date
2016

Distributed energy resources have experienced dramatic growth and are beginning to support a significant amount of customer loads. Power electronic converters are the primary interface between the grid and the distributed energy resources/storage and offer several advantages including fast control, flexibility and high efficiency. The efficiency and the power density by volume are important performance metrics of a power converter. Compact and high efficiency power converter is beneficial to the cost-effectiveness of the converter interfaced generations. In this thesis, a soft-switching technique is proposed to reduce the size of passive components in a grid-connected converter while maintaining a high power …

Contributors
Yu, Ziwei, Ayyanar, Raja, Vittal, Vijay, et al.
Created Date
2018

This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in damping system oscillations, gets reduced as an increase in renewables like wind and solar photovoltaics is accompanied by a decrease in conventional generators. This aspect of high penetration of renewables has the potential to affect the rotor angle stability and small signal stability of power systems. The system with increased …

Contributors
Singh, Iknoor, Vittal, Vijay, Ayyanar, Raja, et al.
Created Date
2012

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded. This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to …

Contributors
Li, Yuting, Tylavsky, Daniel J, Undrill, John, et al.
Created Date
2015

Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS) simulators are inadequate to represent the dynamic behavior of these devices accurately. On the other hand, simulating a large system using an electromagnetic transient (EMT) simulator is computationally impractical. EMT-TS hybrid simulation approach is an alternative to address these challenges. Furthermore, to thoroughly analyze the increased interactions among the transmission …

Contributors
Huang, Qiuhua, Vittal, Vijay, Undrill, John M., et al.
Created Date
2016