Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2012 2019


Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on ...

Contributors
Lee, Soochan, Phelan, Patrick E, Wu, Carole-Jean, et al.
Created Date
2015

Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies to produce end use parts, and Fused Deposition Modeling (FDM) has gained traction in leading the transition of rapid prototyping technologies to rapid manufacturing. But parts built with the FDM process exhibit property anisotropy. Many studies have been conducted into process optimization, material properties and even post processing of parts, ...

Contributors
Kurapatti Ravi, Abinesh, Hao Hsu, Keng, Hildreth, Owen, et al.
Created Date
2016

A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC family, specifically TiS3, ZrS3, and HfS3, are relatively unknown and studies performed in this work elucidates the origin of their Raman characteristics. The crystals were synthesized through chemical vapor transport prior to mechanical exfoliation onto Si/SiO¬2 substrates. XRD, AFM, and Raman spectroscopy were used to determine the crystallinity, thickness, and ...

Contributors
Kong, Wilson, Tongay, Sefaattin, Wang, Liping, et al.
Created Date
2017

Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) ...

Contributors
Gopalakrishna, Hamsini, He, Ximin, Holman, Zachary C, et al.
Created Date
2016

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one ...

Contributors
Sun, Xiaoda, Rykaczewski, Konrad, Lin, Jerry, et al.
Created Date
2017

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting ...

Contributors
Peshlakai, Aaron Ron, Phelan, Patrick, Trimble, Steven, et al.
Created Date
2012

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the ...

Contributors
Yuan, Jing, Chen, Kangping, Wang, Liping, et al.
Created Date
2013

Nanostructured materials show signicant enhancement in the thermoelectric g- ure of merit (zT) due to quantum connement eects. Improving the eciency of thermoelectric devices allows for the development of better, more economical waste heat recovery systems. Such systems may be used as bottoming or co-generation cycles in conjunction with conventional power cycles to recover some of the wasted heat. Thermal conductivity measurement systems are an important part of the char- acterization processes of thermoelectric materials. These systems must possess the capability of accurately measuring the thermal conductivity of both bulk and thin-lm samples at dierent ambient temperatures. This paper discusses ...

Contributors
Jaber, Abbas, Wang, Robert, Wang, Liping, et al.
Created Date
2014

Photovoltaic modules degrade in the field. This thesis aims to answer two questions: 1. Do photovoltaic modules degrade linearly or not? 2. Do soiled modules operate at lower temperatures than clean modules? Answers to these questions are provided in part 1 and part 2 of this thesis respectively. Part 1: Linearity determination in degradation: The electricity output from PV power plants degrades every year. Generally, a system’s life is considered to last for 20-25 years and rate of degradation is commonly assumed as 1% per year. PV degradation can be found out using Performance Ratio (PR), Performance Index (PI) and ...

Contributors
Patankar, Adit, Tamizhmani, Govindasamy, Wang, Liping, et al.
Created Date
2017

Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV modules. This phenomenon occurs over a period of time with many unpredictable environmental variables indicated above. This situation makes it difficult to calculate or predict the soiling effect on performance. The dust particles vary from one location to the other in terms of particle size, color and chemical composition. These ...

Contributors
Mantha, Shanmukha Srinivas, Tamizhmani, Govindasamy, Phelan, Patrick, et al.
Created Date
2016