Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Overcrowding of Emergency Departments (EDs) put the safety of patients at risk. Decision makers implement Ambulance Diversion (AD) as a way to relieve congestion and ensure timely treatment delivery. However, ineffective design of AD policies reduces the accessibility to emergency care and adverse events may arise. The objective of this dissertation is to propose methods to design and analyze effective AD policies that consider performance measures that are related to patient safety. First, a simulation-based methodology is proposed to evaluate the mean performance and variability of single-factor AD policies in a single hospital environment considering the trade-off between average waiting …

Ramirez Nafarrate, Adrian, Fowler, John W., Wu, Teresa, et al.
Created Date

Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model is used to evaluate how scheduling heuristics perform with respect to the competing criteria of expected patient waiting time and expected surgical suite overtime for a single day compared to current practice. Next, a bi-criteria Genetic Algorithm is used to determine if better solutions can be obtained for this single …

Gul, Serhat, Fowler, John W., Denton, Brian T., et al.
Created Date