Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




In this thesis, a single-level, multi-item capacitated lot sizing problem with setup carryover, setup splitting and backlogging is investigated. This problem is typically used in the tactical and operational planning stage, determining the optimal production quantities and sequencing for all the products in the planning horizon. Although the capacitated lot sizing problems have been investigated with many different features from researchers, the simultaneous consideration of setup carryover and setup splitting is relatively new. This consideration is beneficial to reduce costs and produce feasible production schedule. Setup carryover allows the production setup to be continued between two adjacent periods without incurring …

Contributors
Chen, Cheng-Lung, Zhang, Muhong, Mohan, Srimathy, et al.
Created Date
2015

Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model is used to evaluate how scheduling heuristics perform with respect to the competing criteria of expected patient waiting time and expected surgical suite overtime for a single day compared to current practice. Next, a bi-criteria Genetic Algorithm is used to determine if better solutions can be obtained for this single …

Contributors
Gul, Serhat, Fowler, John W., Denton, Brian T., et al.
Created Date
2010

This research by studies the computational performance of four different mixed integer programming (MIP) formulations for single machine scheduling problems with varying complexity. These formulations are based on (1) start and completion time variables, (2) time index variables, (3) linear ordering variables and (4) assignment and positional date variables. The objective functions that are studied in this paper are total weighted completion time, maximum lateness, number of tardy jobs and total weighted tardiness. Based on the computational results, discussion and recommendations are made on which MIP formulation might work best for these problems. The performances of these formulations very much …

Contributors
Khowala, Ketan, Fowler, John, Keha, Ahmet, et al.
Created Date
2012

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty. In the first …

Contributors
Li, Chao, Hedman, Kory W, Zhang, Muhong, et al.
Created Date
2016