Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


With the development of computer and sensing technology, rich datasets have become available in many fields such as health care, manufacturing, transportation, just to name a few. Also, data come from multiple heterogeneous sources or modalities. This is a common phenomenon in health care systems. While multi-modality data fusion is a promising research area, there are several special challenges in health care applications. (1) The integration of biological and statistical model is a big challenge; (2) It is commonplace that data from various modalities is not available for every patient due to cost, accessibility, and other reasons. This results in …

Contributors
Liu, Xiaonan, Li, Jing, Wu, Teresa, et al.
Created Date
2019

Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma. The first topic is a Mixed Effects Transfer Learning …

Contributors
Yoon, Hyunsoo, Li, Jing, Wu, Teresa, et al.
Created Date
2018

With trends of globalization on rise, predominant of the trades happen by sea, and experts have predicted an increase in trade volumes over the next few years. With increasing trade volumes, container ships’ upsizing is being carried out to meet the demand. But the problem with container ships’ upsizing is that the sea port terminals must be equipped adequately to improve the turnaround time otherwise the container ships’ upsizing would not yield the anticipated benefits. This thesis focus on a special type of a double automated crane set-up, with a finite interoperational buffer capacity. The buffer is placed in between …

Contributors
Rengarajan, Sundaravaradhan, Pedrielli, Giulia, Ju, Feng, et al.
Created Date
2018

Mathematical modeling and decision-making within the healthcare industry have given means to quantitatively evaluate the impact of decisions into diagnosis, screening, and treatment of diseases. In this work, we look into a specific, yet very important disease, the Alzheimer. In the United States, Alzheimer’s Disease (AD) is the 6th leading cause of death. Diagnosis of AD cannot be confidently confirmed until after death. This has prompted the importance of early diagnosis of AD, based upon symptoms of cognitive decline. A symptom of early cognitive decline and indicator of AD is Mild Cognitive Impairment (MCI). In addition to this qualitative test, …

Contributors
Camarena, Raquel, Pedrielli, Giulia, Li, Jing, et al.
Created Date
2018

Technology advancements in diagnostic imaging, smart sensing, and health information systems have resulted in a data-rich environment in health care, which offers a great opportunity for Precision Medicine. The objective of my research is to develop data fusion and system informatics approaches for quality and performance improvement of health care. In my dissertation, I focus on three emerging problems in health care and develop novel statistical models and machine learning algorithms to tackle these problems from diagnosis to care to system-level decision-making. The first topic is diagnosis/subtyping of migraine to customize effective treatment to different subtypes of patients. Existing clinical …

Contributors
Si, Bing, Li, Jing, Montgomery, Douglas, et al.
Created Date
2018

Under different environmental conditions, the relationship between the design and operational variables of a system and the system’s performance is likely to vary and is difficult to be described by a single model. The environmental variables (e.g., temperature, humidity) are not controllable while the variables of the system (e.g. heating, cooling) are mostly controllable. This phenomenon has been widely seen in the areas of building energy management, mobile communication networks, and wind energy. To account for the complicated interaction between a system and the multivariate environment under which it operates, a Sparse Partitioned-Regression (SPR) model is proposed, which automatically searches …

Contributors
Ning, Shuluo, Li, Jing, Wu, Teresa, et al.
Created Date
2018

A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled …

Contributors
Lee, Dongjin, Pan, Rong, Montgomery, Douglas, et al.
Created Date
2018

Healthcare operations have enjoyed reduced costs, improved patient safety, and innovation in healthcare policy over a huge variety of applications by tackling prob- lems via the creation and optimization of descriptive mathematical models to guide decision-making. Despite these accomplishments, models are stylized representations of real-world applications, reliant on accurate estimations from historical data to jus- tify their underlying assumptions. To protect against unreliable estimations which can adversely affect the decisions generated from applications dependent on fully- realized models, techniques that are robust against misspecications are utilized while still making use of incoming data for learning. Hence, new robust techniques are …

Contributors
Bren, Austin, Saghafian, Soroush, Mirchandani, Pitu, et al.
Created Date
2018

In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and …

Contributors
Wang, Kun, Li, Jing, Wu, Teresa, et al.
Created Date
2018

One of the greatest 21st century challenges is meeting the needs of a growing world population expected to increase 35% by 2050 given projected trends in diets, consumption and income. This in turn requires a 70-100% improvement on current production capability, even as the world is undergoing systemic climate pattern changes. This growth not only translates to higher demand for staple products, such as rice, wheat, and beans, but also creates demand for high-value products such as fresh fruits and vegetables (FVs), fueled by better economic conditions and a more health conscious consumer. In this case, it would seem that …

Contributors
Flores, Hector M., Villalobos, Rene, Pan, Rong, et al.
Created Date
2017