Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Doctoral Dissertation
Date Range
2010 2019


Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data imbalance and data noise have been treated separately in the data mining field. Yet, such approach ignores the mutual effects and as a result may lead to new problems. A desirable solution is to tackle these two issues jointly. Noting the complementary nature of generative and discriminative models, this research …

Contributors
He, Miao, Wu, Teresa, Li, Jing, et al.
Created Date
2014

A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, a PCM suffers from several issues limiting its application to large-scale decision problems, specifically: (1) to the curse of dimensionality, that is, a large number of pairwise comparisons need to be elicited from a decision maker (DM), (2) inconsistent and (3) imprecise preferences maybe obtained due to the limited cognitive power of DMs. This dissertation proposes a PCM Framework …

Contributors
Jalao, Eugene Rex Lazaro, Shunk, Dan L, Wu, Teresa, et al.
Created Date
2013

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, …

Contributors
Zou, Na, Li, Jing, Baydogan, Mustafa, et al.
Created Date
2015

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually …

Contributors
Kuitche, Joseph Mathurin, Pan, Rong, TamizhMani, Govindasamy, et al.
Created Date
2014

Buildings (approximately half commercial and half residential) consume over 70% of the electricity among all the consumption units in the United States. Buildings are also responsible for approximately 40% of CO2 emissions, which is more than any other industry sectors. As a result, the initiative smart building which aims to not only manage electrical consumption in an efficient way but also reduce the damaging effect of greenhouse gases on the environment has been launched. Another important technology being promoted by government agencies is the smart grid which manages energy usage across a wide range of buildings in an effort to …

Contributors
Hu, Mengqi, Wu, Teresa, Weir, Jeffery, et al.
Created Date
2012

A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled …

Contributors
Lee, Dongjin, Pan, Rong, Montgomery, Douglas, et al.
Created Date
2018

Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive …

Contributors
Cui, Can, Wu, Teresa, Weir, Jeffery D., et al.
Created Date
2016

Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud computing. However, it is challenging to satisfy objectives of all service providers and all cloud users in an unpredictable environment with dynamic workload, large shared resources and complex policies to manage them. Many studies propose to use centralized algorithms for achieving optimal solutions for resource allocation. However, the centralized algorithms may encounter the scalability problem to handle a large number …

Contributors
Yang, Su Seon, Ye, Nong, Wu, Teresa, et al.
Created Date
2016

Technology advancements in diagnostic imaging, smart sensing, and health information systems have resulted in a data-rich environment in health care, which offers a great opportunity for Precision Medicine. The objective of my research is to develop data fusion and system informatics approaches for quality and performance improvement of health care. In my dissertation, I focus on three emerging problems in health care and develop novel statistical models and machine learning algorithms to tackle these problems from diagnosis to care to system-level decision-making. The first topic is diagnosis/subtyping of migraine to customize effective treatment to different subtypes of patients. Existing clinical …

Contributors
Si, Bing, Li, Jing, Montgomery, Douglas, et al.
Created Date
2018

Healthcare operations have enjoyed reduced costs, improved patient safety, and innovation in healthcare policy over a huge variety of applications by tackling prob- lems via the creation and optimization of descriptive mathematical models to guide decision-making. Despite these accomplishments, models are stylized representations of real-world applications, reliant on accurate estimations from historical data to jus- tify their underlying assumptions. To protect against unreliable estimations which can adversely affect the decisions generated from applications dependent on fully- realized models, techniques that are robust against misspecications are utilized while still making use of incoming data for learning. Hence, new robust techniques are …

Contributors
Bren, Austin, Saghafian, Soroush, Mirchandani, Pitu, et al.
Created Date
2018