Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2018


This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems. Preliminary design and simulation …

Contributors
Caselli, Derek, Ning, Cun-Zheng, Tao, Meng, et al.
Created Date
2014

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A …

Contributors
Li, Debin, Ning, Cun-Zheng, Zhang, Yong-Hang, et al.
Created Date
2012

Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with …

Contributors
Ding, Kang, Ning, Cun-Zheng, Yu, Hongbin, et al.
Created Date
2014

Semiconductor nanolasers, as a frontier subject has drawn a great deal of attention over the past decade. Semiconductor nanolasers are compatible with on-chip integrations towards the ultimate realization of photonic integrated circuits. However, innovative approaches are strongly required to overcome the limitation of lattice-mismatch issues. In this dissertation, two alternative approaches are employed to overcome the lattice-mismatch issues. i) By taking advantage of nanowires or nanobelts techniques, flexibility in bandgap engineering has been greatly expanded, resulting in the nanolasers with wide wavelength coverage and tunability. Simultaneous two-color lasing in green and red is firstly achieved from monolithic cadmium sulfide selenide …

Contributors
Fan, Fan, Ning, Cun-Zheng, Balanis, Constantine A, et al.
Created Date
2016

The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, etc., given the existing rich knowledge in device fabrication based on these materials. This dissertation explores the growth of InGaAsP alloys using a low-cost method that could be potentially important especially for III-V NW-based solar …

Contributors
Hashemi Amiri, Seyed Ebrahim, Ning, Cun-Zheng, Petuskey, William, et al.
Created Date
2018

In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to find out the properties of Erbium Chloride Silicate (ECS) and two segment CdS-CdSe samples. In the first part of my research, growth of very new material, Erbium Chloride Silicate (ECS), in form of core/shell Si/ECS and pure ECS nanowires, was demonstrated. This new material has very fascinating properties for new …

Contributors
Turkdogan, Sunay, Ning, Cun-Zheng, Tao, Meng, et al.
Created Date
2012

Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from gaining a thorough understanding of single molecule junctions. Firstly, the time resolution of experiments is typically limited to milli to microseconds, while molecular dynamics simulations are carried out on the time scale of pico to nanoseconds. A huge gap therefore persists between the theory and the experiments. This thesis demonstrates …

Contributors
Guo, Shaoyin, Tao, Nongjian, Bennett, Peter, et al.
Created Date
2012

Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively studied for nanoscale optoelectronic applications. A systematic and comprehensive optical and microstructural study of several important infrared semiconductor NWs is presented in this thesis, which includes InAs, PbS, InGaAs, erbium chloride silicate and erbium silicate. Micro-photoluminescence (PL) and transmission electron microscope (TEM) were utilized in conjunction to characterize the optical …

Contributors
Sun, Minghua, Ning, Cun-Zheng, Yu, Hongbin, et al.
Created Date
2011

Nanowires are one-dimensional (1D) structures with diameter on the nanometer scales with a high length-to-diameter aspect ratio. Nanowires of various materials including semiconductors, dielectrics and metals have been intensively researched in the past two decades for applications to electrical and optical devices. Typically, nanowires are synthesized using the vapor-liquid-solid (VLS) approach, which allows defect-free 1D growth despite the lattice mismatch between nanowires and substrates. Lattice mismatch issue is a serious problem in high-quality thin film growth of many semiconductors and non-semiconductors. Therefore, nanowires provide promising platforms for the applications requiring high crystal quality materials. With the 1D geometry, nanowires are …

Contributors
Liu, Zhicheng, Ning, Cun-Zheng, Palais, Joseph, et al.
Created Date
2015

This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied …

Contributors
Chen, Dongzi, Ning, Cun-Zheng, Zhang, Yong-Hang, et al.
Created Date
2012