Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Language
  • English
Date Range
2010 2019


As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was …

Contributors
Yu, Jialin, Jabbour, Ghassan E, Alford, Terry L, et al.
Created Date
2011

Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus, there is a need to integrate soft and hard materials for the advancement of environmental-ly responsive materials. Conventional hydrogels lack good mechanical properties and have inherently slow response time, important characteristics which must be improved before the hydrogels can be integrated with silicon. In the present dissertation work, both these …

Contributors
Chatterjee, Prithwish, Dai, Lenore L., Jiang, Hanqing, et al.
Created Date
2015

Li-ion batteries are being used on a large scale varying from consumer electronics to electric vehicles. The key to efficient use of batteries is implementing a well-developed battery management system. Also, there is an opportunity for research for improving the battery performance in terms of size and capacity. For all this it is imperative to develop Li-ion cell model that replicate the performance of a physical cell unit. This report discusses a dual polarization cell model and a battery management system implemented to control the operation of the battery. The Li-ion cell is modelled, and the performance is observed in …

Contributors
Puranik, Ishaan, Qin, Jiangchao, Karady, George, et al.
Created Date
2018

Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with …

Contributors
Ding, Kang, Ning, Cun-Zheng, Yu, Hongbin, et al.
Created Date
2014

Semiconductor nanolasers, as a frontier subject has drawn a great deal of attention over the past decade. Semiconductor nanolasers are compatible with on-chip integrations towards the ultimate realization of photonic integrated circuits. However, innovative approaches are strongly required to overcome the limitation of lattice-mismatch issues. In this dissertation, two alternative approaches are employed to overcome the lattice-mismatch issues. i) By taking advantage of nanowires or nanobelts techniques, flexibility in bandgap engineering has been greatly expanded, resulting in the nanolasers with wide wavelength coverage and tunability. Simultaneous two-color lasing in green and red is firstly achieved from monolithic cadmium sulfide selenide …

Contributors
Fan, Fan, Ning, Cun-Zheng, Balanis, Constantine A, et al.
Created Date
2016

We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin’s procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N^2) to O(N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet …

Contributors
Zhang, Lisha, Pan, George, Diaz, Rodolfo, et al.
Created Date
2016

Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data collecting in hot spring environment. The fabricated flexible TEGs can be easily deployed on the uneven surface of heated rocks at the rim of hot springs. By employing the temperature gradient between the hot rock surface and the air, these TEGs can generate power to extend the battery lifetime of the sensor notes and therefore reduce multiple batteries changes where …

Contributors
Han, Ruirui, Yu, Hongyu, Jiang, Hanqing, et al.
Created Date
2018

Visible light communication (VLC) is the promise of a high data rate wireless network for both indoor and outdoor uses. It competes with 5G radio frequency (RF) system as well. Even though the breakthrough of Gallium Nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) enhances the -3dB modulation bandwidth dramatically from tens of MHz to hundreds of MHz, the optical power onto a fast photo receiver drops exponentially. It determines the signal to noise ratio (SNR) of VLC. For full implementation of the useful high data-rate VLC link enabled by a GaN-based micro-LED, it needs focusing optics and a tracking system. In this …

Contributors
Lu, Zhijian, Zhao, Yuji, Yu, Hongbin, et al.
Created Date
2017

The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, etc., given the existing rich knowledge in device fabrication based on these materials. This dissertation explores the growth of InGaAsP alloys using a low-cost method that could be potentially important especially for III-V NW-based solar …

Contributors
Hashemi Amiri, Seyed Ebrahim, Ning, Cun-Zheng, Petuskey, William, et al.
Created Date
2018

In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system. In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study in growing two-segment axial nanowires and radial nanobelts/sheets using the ternary CdSxSe1-x alloys. I demonstrated simultaneous red (from CdSe-rich) and green (from CdS-rich) light emission from a single monolithic heterostructure with a maximum wavelength separation of 160 nm. I also demonstrated the first simultaneous two-color lasing from a single nanosheet …

Contributors
TURKDOGAN, SUNAY, Ning, Cun Zheng, Palais, Joseph C, et al.
Created Date
2015