Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Language
  • English
Date Range
2010 2019


Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure mathematical consideration and only limited effort has been paid to include mechanical properties, the goal of my research is developing a method to analyze the mechanical behavior of origami and kirigami based structures. Mechanical characteristics, including nonlocal effect and fracture of the structures, as well as elasticity and plasticity of …

Contributors
Lv, Cheng, Jiang, Hanqing, Yu, Hongbin, et al.
Created Date
2016

GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds of nanometers thickness and reflective back scattering can potentially offer efficiencies greater than 30 %. The 300 nm GaAs solar cell with AlInP/Au reflective back scattering is carefully designed and demonstrates an efficiency of 19.1 %. The device performance is analyzed using the semi-analytical model with Phong distribution implemented to …

Contributors
Liu, Shi, Zhang, Yong-Hang, Johnson, Shane R, et al.
Created Date
2015

This dissertation will investigate two of the most promising high-capacity anode materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on studying the mechanical behaviors of the two materials during charge and discharge and understanding how these mechanical behaviors may affect their electrochemical performance. In the first part, amorphous Si anode will be studied. Despite many existing studies on silicon (Si) anodes for lithium ion batteries (LIBs), many essential questions still exist on compound formation, composition, and properties. Here it is shown that some previously accepted findings do not truthfully reflect the actual lithiation mechanisms in …

Contributors
Wang, Xu, Jiang, Hanqing, Yu, Hongbin, et al.
Created Date
2018

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion. In this dissertation, two types of devices are demonstrated: …

Contributors
Fu, Houqiang, Zhao, Yuji, Vasileska, Dragica, et al.
Created Date
2019

Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D) nanowires can have different electronic properties for potential novel applications. In this work, we present the study of ZnTe nanowires (NWs) that are synthesized through a simple vapor-liquid-solid (VLS) method. By controlling the presence or the absence of Au catalysts and controlling the growth parameters such as growth temperature, various growth morphologies of ZnTe, such as thin films and nanowires can be obtained. The characterization …

Contributors
Peng, Jhih-Hong, Yu, Hongbin, Roedel, Ronald, et al.
Created Date
2017