Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the …

Contributors
Miao, Lifeng, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2013

As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires a better understanding of renewable generation output, in addition to power grid systems that improve power system operational performance in the presence of anticipated events such as wind power ramps. Because of the stochastic, uncontrollable nature of renewable resources, a thorough and accurate characterization of wind activity is necessary to maintain grid stability and reliability. Wind power ramps from an …

Contributors
Ganger, David Wu, Vittal, Vijay, Zhang, Junshan, et al.
Created Date
2016

Large-scale integration of wind generation introduces planning and operational difficulties due to the intermittent and highly variable nature of wind. In particular, the generation from non-hydro renewable resources is inherently variable and often times difficult to predict. Integrating significant amounts of renewable generation, thus, presents a challenge to the power systems operators, requiring additional flexibility, which may incur a decrease of conventional generation capacity. This research investigates the algorithms employing emerging computational advances in system operation policies that can improve the flexibility of the electricity industry. The focus of this study is on flexible operation policies for renewable generation, particularly …

Contributors
Hedayati Mehdiabadi, Mojgan, Zhang, Junshan, Hedman, Kory, et al.
Created Date
2017

Data privacy is emerging as one of the most serious concerns of big data analytics, particularly with the growing use of personal data and the ever-improving capability of data analysis. This dissertation first investigates the relation between different privacy notions, and then puts the main focus on developing economic foundations for a market model of trading private data. The first part characterizes differential privacy, identifiability and mutual-information privacy by their privacy--distortion functions, which is the optimal achievable privacy level as a function of the maximum allowable distortion. The results show that these notions are fundamentally related and exhibit certain consistency: …

Contributors
Wang, Weina, Ying, Lei, Zhang, Junshan, et al.
Created Date
2016

The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields, but the difficulties inherent in processing the enormous amount of data, as well as the rate at which it is generated, also give rise to significant challenges. In particular, processing, modeling, and understanding the structure of online social networks is computationally difficult due to these challenges. The goal of this study is twofold: first to present a new networked data processing …

Contributors
Proulx, Brian Benjamin, Zhang, Junshan, Cochran, Douglas, et al.
Created Date
2015

In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that can be used to detect the movement of liquid electrolyte between electrodes by converting it to an output current. Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise, small size and independence on the direction of sensitivity axis. In addition, the fact that …

Contributors
Zhao, Zuofeng, Yu, Hongyu, Zhang, Junshan, et al.
Created Date
2015

This dissertation describes a novel, low cost strategy of using particle streak (track) images for accurate micro-channel velocity field mapping. It is shown that 2-dimensional, 2-component fields can be efficiently obtained using the spatial variation of particle track lengths in micro-channels. The velocity field is a critical performance feature of many microfluidic devices. Since it is often the case that un-modeled micro-scale physics frustrates principled design methodologies, particle based velocity field estimation is an essential design and validation tool. Current technologies that achieve this goal use particle constellation correlation strategies and rely heavily on costly, high-speed imaging hardware. The proposed …

Contributors
Mahanti, Prasun, Cochran, Douglas, Taylor, Thomas, et al.
Created Date
2011

Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain …

Contributors
Tu, Kai, Duman, Tolga M, Zhang, Junshan, et al.
Created Date
2011

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. …

Contributors
Miller, Steven R., Spanias, Andreas, Tepedelenlioglu, Cihan, et al.
Created Date
2013

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. …

Contributors
Qian, Dajun, Zhang, Junshan, Ying, Lei, et al.
Created Date
2012