Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) …

Contributors
Kulasekaran, Siddharth, Ayyanar, Raja, Karady, George, et al.
Created Date
2017

The most important metrics considered for electric vehicles are power density, efficiency, and reliability of the powertrain modules. The powertrain comprises of an Electric Machine (EM), power electronic converters, an Energy Management System (EMS), and an Energy Storage System (ESS). The power electronic converters are used to couple the motor with the battery stack. Including a DC/DC converter in the powertrain module is favored as it adds an additional degree of freedom to achieve flexibility in optimizing the battery module and inverter independently. However, it is essential that the converter is rated for high peak power and can maintain high …

Contributors
Mullangi Chenchu, Hemanth, Ayyanar, Raja, Qin, Jiangchao, et al.
Created Date
2018