ASU Electronic Theses and Dissertations

Permanent Link Feedback

Contributor
Language
  • English
Date Range
2010 2017

In supervised learning, machine learning techniques can be applied to learn a model on a small set of labeled documents which can be used to classify a larger set of unknown documents. Machine learning techniques can be used to analyze a political scenario in a given society. A lot of research has been going on in this field to understand the interactions of various people in the society in response to actions taken by their organizations. This paper talks about understanding the Russian influence on people in Latvia. This is done by building an eeffective model learnt on initial set ...

Contributors
Bollapragada, Lakshmi Gayatri Niharika, Davulcu, Hasan, Sen, Arunabha, et al.
Created Date
2016

Online health forums provide a convenient channel for patients, caregivers, and medical professionals to share their experience, support and encourage each other, and form health communities. The fast growing content in health forums provides a large repository for people to seek valuable information. A forum user can issue a keyword query to search health forums regarding to some specific questions, e.g., what treatments are effective for a disease symptom? A medical researcher can discover medical knowledge in a timely and large-scale fashion by automatically aggregating the latest evidences emerging in health forums. This dissertation studies how to effectively discover information ...

Contributors
Liu, Yunzhong, Chen, Yi, Liu, Huan, et al.
Created Date
2016

While discrete emotions like joy, anger, disgust etc. are quite popular, continuous emotion dimensions like arousal and valence are gaining popularity within the research community due to an increase in the availability of datasets annotated with these emotions. Unlike the discrete emotions, continuous emotions allow modeling of subtle and complex affect dimensions but are difficult to predict. Dimension reduction techniques form the core of emotion recognition systems and help create a new feature space that is more helpful in predicting emotions. But these techniques do not necessarily guarantee a better predictive capability as most of them are unsupervised, especially in ...

Contributors
Lade, Prasanth, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2015

Proliferation of social media websites and discussion forums in the last decade has resulted in social media mining emerging as an effective mechanism to extract consumer patterns. Most research on social media and pharmacovigilance have concentrated on Adverse Drug Reaction (ADR) identification. Such methods employ a step of drug search followed by classification of the associated text as consisting an ADR or not. Although this method works efficiently for ADR classifications, if ADR evidence is present in users posts over time, drug mentions fail to capture such ADRs. It also fails to record additional user information which may provide an ...

Contributors
Chandrashekar, Pramod Bharadwaj Chandrashekar, Davulcu, Hasan, Gonzalez, Graciela, et al.
Created Date
2016

Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and hardware cost have dramatically been improved. These improvements have made cyber systems omnipotent, and control many aspects of human lives. Emerging trends in successful cyber system breaches have shown increasing sophistication in attacks and that attackers are no longer limited by resources, including human and computing power. Most existing cyber defense systems for IoT systems have two major issues: (1) ...

Contributors
Buduru, Arun Balaji, Yau, Sik-Sang, Ahn, Gail-Joon, et al.
Created Date
2016

The amount of time series data generated is increasing due to the integration of sensor technologies with everyday applications, such as gesture recognition, energy optimization, health care, video surveillance. The use of multiple sensors simultaneously for capturing different aspects of the real world attributes has also led to an increase in dimensionality from uni-variate to multi-variate time series. This has facilitated richer data representation but also has necessitated algorithms determining similarity between two multi-variate time series for search and analysis. Various algorithms have been extended from uni-variate to multi-variate case, such as multi-variate versions of Euclidean distance, edit distance, dynamic ...

Contributors
Garg, Yash, Candan, Kasim Selcuk, Chowell-Punete, Gerardo, et al.
Created Date
2015

A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software delivery model, in which mission-critical applications are composed, deployed, and executed on cloud platforms. Testing SaaS applications is challenging because new applications need to be tested once they are composed, and prior to their deployment. A composition of components providing services yields a configuration providing a SaaS application. While individual components in the configuration may have been thoroughly tested, faults still arise due to interactions among the components composed, making ...

Contributors
Qi, Guanqiu, Tsai, Wei-Tek, Davulcu, Hasan, et al.
Created Date
2014

Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance. In this thesis, I focus on developing learning methods for the high-dimensional imbalanced biomedical data. In the first part, a sparse canonical correlation analysis (CCA) method is presented. The penalty terms is used to control the sparsity of the projection matrices of CCA. The sparse CCA method ...

Contributors
Yang, Tao, Ye, Jieping, Wang, Yalin, et al.
Created Date
2013

In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust multi-variate temporal (RMT) feature extraction algorithm that can be used for locating, filtering, and describing salient features in multi-variate time series data sets. The proposed RMT feature can also be used for supporting multiple analysis tasks, such as visualization, segmentation, and searching / retrieving based on multi-variate time series similarities. ...

Contributors
Wang, Xiaolan, Candan, Kasim Selcuk, Sapino, Maria Luisa, et al.
Created Date
2013

The purpose of this research is to efficiently analyze certain data provided and to see if a useful trend can be observed as a result. This trend can be used to analyze certain probabilities. There are three main pieces of data which are being analyzed in this research: The value for δ of the call and put option, the %B value of the stock, and the amount of time until expiration of the stock option. The %B value is the most important. The purpose of analyzing the data is to see the relationship between the variables and, given certain values, ...

Contributors
Reeves, Michael Thomas, Richa, Andrea, McCarville, Daniel, et al.
Created Date
2015

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.