Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an …

Contributors
Baker, Noel Catherine, Huang, Huei-Ping, Trimble, Steven, et al.
Created Date
2013

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. …

Contributors
Tahir, Sherzad Tahseen, Huang, Huei-Ping, Phelan, Patrick, et al.
Created Date
2019

Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during the particle bed expansion process. Image processing, signal processing, and Particle Image Velocimetry techniques, are used to examine the relationships between particle size, initial bed height, bed expansion rate, and gas velocities. The gas-particle interface and the particle bed as a whole expand and evolve in stages. First, the bed …

Contributors
Zunino, Heather, Adrian, Ronald J, Clarke, Amanda, et al.
Created Date
2019