Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Date Range
2012 2017


With the power system being increasingly operated near its limits, there is an increasing need for a power-flow (PF) solution devoid of convergence issues. Traditional iterative methods are extremely initial-estimate dependent and not guaranteed to converge to the required solution. Holomorphic Embedding (HE) is a novel non-iterative procedure for solving the PF problem. While the theory behind a restricted version of the method is well rooted in complex analysis, holomorphic functions and algebraic curves, the practical implementation of the method requires going beyond the published details and involves numerical issues related to Taylor's series expansion, Padé approximants, convolution and solving …

Contributors
SUBRAMANIAN, MUTHU KUMAR, Tylavsky, Daniel J, Undrill, John M, et al.
Created Date
2014

In this work a comparison has been made between the predictions from the models using both the present theory for the underground cable temperature prediction and the CYMCAP application and the field measurements to determine which, if any, models are capable of predicting the temperature and hotspot locations in an installation where the power cable is not embedded with the optical fibers and, therefore, where the cable temperatures must be inferred from the temperature measurements made in nearby spare ducts. The temperature measurements were collected from the underground 69 kV cable at the Brandow-Pickrell installation, which is a part of …

Contributors
Sharma, Aman, Tylavsky, Daniel J, Holbert, Keith, et al.
Created Date
2017

The development of new policies favoring integration of renewable energy into the grid has created a need to relook at our existing infrastructure resources and at the way the power system is currently operated. Also, the needs of electric energy markets and transmission/generation expansion planning has created a niche for development of new computationally efficient and yet reliable, simple and robust power flow tools for such studies. The so called dc power flow algorithm is an important power flow tool currently in use. However, the accuracy and performance of dc power flow results is highly variable due to the various …

Contributors
Sood, Puneet, Tylavsky, Daniel J, Vittal, Vijay, et al.
Created Date
2014

Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability …

Contributors
Zhang, Ming, Tylavsky, Daniel J, Ayyanar, Raja, et al.
Created Date
2013

t temperature (HST) and top-oil temperature (TOT) are reliable indicators of the insulation temperature. The objective of this project is to use thermal models to estimate the transformer's maximum dynamic loading capacity without violating the HST and TOT thermal limits set by the operator. In order to ensure the optimal loading, the temperature predictions of the thermal models need to be accurate. A number of transformer thermal models are available in the literature. In present practice, the IEEE Clause 7 model is used by the industry to make these predictions. However, a linear regression based thermal model has been observed …

Contributors
Rao, Shruti Dwarkanath, Tylavsky, Daniel J, Holbert, Keith, et al.
Created Date
2014

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded. This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to …

Contributors
Li, Yuting, Tylavsky, Daniel J, Undrill, John, et al.
Created Date
2015

The holomorphic embedding method (HEM) applied to the power-flow problem (HEPF) has been used in the past to obtain the voltages and flows for power systems. The incentives for using this method over the traditional Newton-Raphson based nu-merical methods lie in the claim that the method is theoretically guaranteed to converge to the operable solution, if one exists. In this report, HEPF will be used for two power system analysis purposes: a. Estimating the saddle-node bifurcation point (SNBP) of a system b. Developing reduced-order network equivalents for distribution systems. Typically, the continuation power flow (CPF) is used to estimate the …

Contributors
Rao, Shruti Dwarkanath, Tylavsky, Daniel J, Undrill, John, et al.
Created Date
2017

Today, the electric power system faces new challenges from rapid developing technology and the growing concern about environmental problems. The future of the power system under these new challenges needs to be planned and studied. However, due to the high degree of computational complexity of the optimization problem, conducting a system planning study which takes into account the market structure and environmental constraints on a large-scale power system is computationally taxing. To improve the execution time of large system simulations, such as the system planning study, two possible strategies are proposed in this thesis. The first one is to implement …

Contributors
Li, Nan, Tylavsky, Daniel J, Vittal, Vijay, et al.
Created Date
2012

Due to great challenges from aggressive environmental regulations, increased demand due to new technologies and the integration of renewable energy sources, the energy industry may radically change the way the power system is operated and designed. With the motivation of studying and planning the future power system under these new challenges, the development of the new tools is required. A network equivalent that can be used in such planning tools needs to be generated based on an accurate power flow model and an equivalencing procedure that preserves the key characteristics of the original system. Considering the pervasive use of the …

Contributors
Qi, Yingying, Tylavsky, Daniel J, Hedman, Kory W, et al.
Created Date
2013

This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation of the system resources and the network conditions when modeling the distribution system in the transmission OPF and vice-versa. It is further used to develop an accurate pricing mechanism (Distribution-based Location Marginal Pricing), which is reflective of the moment-to-moment costs of generating and delivering electrical energy, for the distribution system. By accurately modeling the two sub-systems, we can improve the economic efficiency and the system reliability, as the price sensitive …

Contributors
Singhal, Nikita Ghanshyam, Hedman, Kory W, Tylavsky, Daniel J, et al.
Created Date
2014