Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Date Range
2010 2019


Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt pavements can potentially be of great importance in estimating the performance of a pavement before it is constructed. Of particular interest are the effects of aging on asphalt rubber pavements, due to the fact that, as a newer technology, few asphalt rubber pavement sections have been evaluated for their full …

Contributors
Reed, Jordan Xavier, Kaloush, Kamil, Mamlouk, Michael, et al.
Created Date
2010

Deterministic solutions are available to estimate the resilient modulus of unbound materials, which are difficult to interpret because they do not incorporate the variability associated with the inherent soil heterogeneity and that associated with environmental conditions. This thesis presents the stochastic evaluation of the Enhanced Integrated Climatic Model (EICM), which is a model used in the Mechanistic-Empirical Pavement Design Guide to estimate the soil long-term equilibrium resilient modulus. The stochastic evaluation is accomplished by taking the deterministic equations in the EICM and applying stochastic procedures to obtain a mean and variance associated with the final design parameter, the resilient modulus …

Contributors
Rosenbalm, Daniel, Zapata, Claudia, Witczak, Matthew, et al.
Created Date
2011

The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents a developed code produced from this research study called ZAPRAM, which is a mechanistically based pavement model based upon Limiting Strain Criteria in airfield HMA pavement design procedures. ZAPRAM is capable of pavement and airfield design analyses considering environmental effects. The program has been coded in Visual Basic and implemented …

Contributors
Salim, Ramadan, Zapata, Claudia, Witczak, Matthew, et al.
Created Date
2011

The infrastructure is built in Unsaturated Soils. However, the geotechnical practitioners insist in designing the structures based on Saturated Soil Mechanics. The design of structures based on unsaturated soil mechanics is desirable because it reduces cost and it is by far a more sustainable approach. The research community has identified the Soil-Water Characteristic Curve as the most important soil property when dealing with unsaturated conditions. This soil property is unpopular among practitioners because the laboratory testing takes an appreciable amount of time. Several authors have attempted predicting the Soil-Water Characteristic Curve; however, most of the published predictions are based on …

Contributors
Torres Hernandez, Gustavo, Zapata, Claudia, Houston, Sandra, et al.
Created Date
2011

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into …

Contributors
Alsanad, Abdullah, Kavazanjian, Edward, Edwards, David, et al.
Created Date
2011

In geotechnical engineering, measuring the unsaturated hydraulic conductivity of fine grained soils can be time consuming and tedious. The various applications that require knowledge of the unsaturated hydraulic conductivity function are great, and in geotechnical engineering, they range from modeling seepage through landfill covers to determining infiltration of water under a building slab. The unsaturated hydraulic conductivity function can be measured using various direct and indirect techniques. The instantaneous profile method has been found to be the most promising unsteady state method for measuring the unsaturated hydraulic conductivity function for fine grained soils over a wide range of suction values. …

Contributors
Jacquemin, Sean Christopher, Zapata, Claudia, Houston, Sandra, et al.
Created Date
2011

A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are …

Contributors
Arab, Mohamed G., Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2011

This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing frozen core samples was developed using optical grade Buehler® Epo-Tek® epoxy resin, a modified triaxial cell, a vacuum/reservoir chamber, a desiccator, and a moisture gauge. The uniform epoxy resin impregnation required proper drying of the soil specimen, application of appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing and curing. …

Contributors
Czupak, Zbigniew David, Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2011

As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique to recover undisturbed samples of saturated cohesionless soil for laboratory testing, despite the fact that water increases in volume when frozen. The explanation generally given for the preservation of soil structure using the freezing technique was that, as long as the freezing front advanced uni-directionally, the expanding pore water is …

Contributors
Katapa, Kanyembo, Kavazanjian, Edward, Houston, Sandra, et al.
Created Date
2011

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently known as DARWin-ME. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 9-44A to develop a framework and mathematical methodology to determine the fatigue endurance limit using the uniaxial fatigue test. In this procedure, the endurance limit is defined as the allowable tensile strains …

Contributors
Zeiada, Waleed Abdelaziz Mohammed, Kaloush, Kamil E, Witczak, Matthew W, et al.
Created Date
2012