Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Resource Type
  • Doctoral Dissertation
Date Range
2011 2019


The experience base of practitioners with expansive soils is largely devoid of directly measured soil suction. This historical lack of soil suction measurement represents an impediment to adoption of modern unsaturated soil engineering to problems of expansive soils. Most notably, soil suction-based analyses are paramount to proper design of foundations in expansive soils. Naturally, the best method to obtain design suction profiles is to perform an appropriate geotechnical investigation that involves soil moisture change-appropriate drilling depths, sampling intervals, and requisite laboratory testing, including suction measurement. However, as practitioners are slow to embrace changes in methodology, specifically regarding the adoption of …

Contributors
Vann, Jeffry David, Houston, Sandra, Houston, William, et al.
Created Date
2019

Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific studies were conducted by utilizing high-pressure devices, axisymmetric drop shape analysis (ADSA), microfluidics, time-lapse technology, Atomic Force Microscopy (AFM) to develop experiments. The effects of nanoparticle on modifying interfacial tension, wettability, viscosity, sweep efficiency and surface attraction forces were investigated. The results show that nanoparticles mixed in water can significantly …

Contributors
Zheng, Xianglei, Jang, Jaewon, Zapata, Claudia, et al.
Created Date
2016

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently known as DARWin-ME. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 9-44A to develop a framework and mathematical methodology to determine the fatigue endurance limit using the uniaxial fatigue test. In this procedure, the endurance limit is defined as the allowable tensile strains …

Contributors
Zeiada, Waleed Abdelaziz Mohammed, Kaloush, Kamil E, Witczak, Matthew W, et al.
Created Date
2012

This dissertation presents an investigation of calcium carbonate precipitation via hydrolysis of urea (ureolysis) catalyzed by plant-extracted urease enzyme for soil improvement. In this approach to soil improvement, referred to as enzyme induced carbonate precipitation (EICP), carbonate minerals are precipitated within the soil pores, cementing soil particles together and increasing the dilatancy of the soil. EICP is a bio-inspired solution to improving the properties of cohesionless soil in that no living organisms are engaged in the process, though it uses a biologically-derived material (urease enzyme). Over the past decade, research has commenced on biologically-mediated solutions like microbially induced carbonate precipitation …

Contributors
Almajed, Abdullah A., Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2017

Laterally-loaded short rigid drilled shaft foundations are the primary foundation used within the electric power transmission line industry. Performance of these laterally loaded foundations is dependent on modulus of the subsurface, which is directly measured by the Pressuremeter (PMT). The PMT test provides the lateral shear modulus at intermediate strains, an equivalent elastic modulus for lateral loading, which mimics the reaction of transmission line foundations within the elastic range of motion. The PMT test, however, is expensive to conduct and rarely performed. Correlations of PMT to blow counts and other index properties have been developed but these correlations have high …

Contributors
Evans, Ashley Elizabeth, Houston, Sandra, Zapata, Claudia, et al.
Created Date
2018

A series of experiments were conducted to support validation of a numerical model for the performance of geomembrane liners subject to waste settlement and seismic loading. These experiments included large scale centrifuge model testing of a geomembrane-lined landfill, small scale laboratory testing to get the relevant properties of the materials used in the large scale centrifuge model, and tensile tests on seamed geomembrane coupons. The landfill model in the large scale centrifuge test was built with a cemented sand base, a thin film NafionTM geomembrane liner, and a mixture of sand and peat for model waste. The centrifuge model was …

Contributors
Gutierrez, Angel, Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2016

The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup, and natural gas production from hydrate bearing sediments. In this study, first, the water retention curve (WRC) and relative permeability in hydrate bearing sediments are explored to obtain fitting parameters for semi-empirical equations. Second, immiscible fluid invasion into porous media is investigated to identify fluid displacement pattern and displacement efficiency that are affected by pore size distribution and connectivity. Finally, fluid flow through granular media is studied to obtain fluid-particle interaction. This study utilizes …

Contributors
MAHABADI, NARIMAN, Jang, Jaewon, Zapata, Claudia, et al.
Created Date
2016

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into …

Contributors
Alsanad, Abdullah, Kavazanjian, Edward, Edwards, David, et al.
Created Date
2011

A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are …

Contributors
Arab, Mohamed G., Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2011

A numerical model for design of the geomembrane elements of waste containment systems has been validated by laboratory testing. Due to the absence of any instrumented case histories of seismic performance of geomembrane liner systems, a large scale centrifuge test of a model geomembrane-lined landfill subject to seismic loading was conducted at the University of California at Davis Centrifuge Test facility as part of National Science Foundation Network for Earthquake the Engineering Simulation Research (NEESR) program. Data collected in the large scale centrifuge test included waste settlement, liner strains and earthquake accelerations at various locations throughout the model. This data …

Contributors
Wu, Xuan, Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2017